Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
Dev Cell. 2012 May 15;22(5):1017-29. doi: 10.1016/j.devcel.2012.02.013.
Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live-cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics.
染色体在中期板上的排列是有丝分裂细胞的特征,但控制这一过程的机制仍不清楚。在这里,我们使用定量活细胞成像和重建的动态微管检测方法来研究有丝分裂着丝粒运动的分子控制。我们确定 Kif18A(驱动蛋白-8)通过直接促进微管停顿,以浓度依赖的方式减弱着丝粒的运动。这种活性为限制着丝粒运动到纺锤体中部区域提供了主要机制。此外,极性推出力通过对动粒张力和着丝粒转换率的位置依赖性调节来在空间上限制染色体。我们证明,极性推出力通过染色质动力蛋白被拮抗调节。这些推挤力依赖于 Kid(驱动蛋白-10)的活性,并被 Kif4A(驱动蛋白-4)拮抗,后者的作用是直接抑制微管生长。这些数据支持这样一种模型,即 Kif18A 和极性推出力通过协同作用,通过对动粒-微管动力学的空间控制来促进着丝粒的排列。