Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.
PLoS One. 2012;7(5):e36947. doi: 10.1371/journal.pone.0036947. Epub 2012 May 14.
Bacteria have evolved the ability to efficiently and resourcefully adapt to changing environments. A key means by which they optimize their use of available nutrients is through adjustments in gene expression with consequent changes in enzyme activity. We report a new method for drawing environmental inferences from gene expression data. Our method prioritizes a list of candidate carbon sources for their compatibility with a gene expression profile using the framework of flux balance analysis to model the organism's metabolic network.
For each of six gene expression profiles for Escherichia coli grown under differing nutrient conditions, we applied our method to prioritize a set of eighteen different candidate carbon sources. Our method ranked the correct carbon source as one of the top three candidates for five of the six expression sets when used with a genome-scale model. The correct candidate ranked fifth in the remaining case. Additional analyses show that these rankings are robust with respect to biological and measurement variation, and depend on specific gene expression, rather than general expression level. The gene expression profiles are highly adaptive: simulated production of biomass averaged 94.84% of maximum when the in silico carbon source matched the in vitro source of the expression profile, and 65.97% when it did not.
Inferences about a microorganism's nutrient environment can be made by integrating gene expression data into a metabolic framework. This work demonstrates that reaction flux limits for a model can be computed which are realistic in the sense that they affect in silico growth in a manner analogous to that in which a microorganism's alteration of gene expression is adaptive to its nutrient environment.
细菌已经进化出高效而灵活地适应不断变化的环境的能力。它们优化可用营养物质利用的一个关键手段是通过基因表达的调整,从而导致酶活性的变化。我们报告了一种从基因表达数据中推断环境的新方法。我们的方法使用通量平衡分析框架优先考虑候选碳源列表,以与其基因表达谱的兼容性为依据,从而对生物体的代谢网络进行建模。
对于大肠杆菌在不同营养条件下生长的六个基因表达谱中的每一个,我们应用我们的方法使用基因组规模模型优先考虑了一组十八种不同的候选碳源。当使用基因组规模模型时,我们的方法在六种表达组中的五种中将正确的碳源排在前三个候选者之一。在剩余的一种情况下,正确的候选者排名第五。进一步的分析表明,这些排名是稳健的,不受生物和测量变化的影响,并且取决于特定的基因表达,而不是一般的表达水平。基因表达谱具有高度的适应性:当虚拟碳源与表达谱的体外来源相匹配时,模拟生物量的产生平均达到最大值的 94.84%,而不匹配时则为 65.97%。
可以通过将基因表达数据整合到代谢框架中,对微生物的营养环境进行推断。这项工作表明,可以计算出模型的反应通量限制,这些限制在某种意义上是现实的,即它们以类似于微生物改变基因表达以适应其营养环境的方式影响虚拟生长。