Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
Biosci Rep. 2012 Aug;32(4):401-11. doi: 10.1042/BSR20120037.
A mutation in the allosteric site of the caspase 3 dimer interface of Val266 to histidine abolishes activity of the enzyme, and models predict that the mutation mimics the action of small molecule allosteric inhibitors by preventing formation of the active site. Mutations were coupled to His266 at two sites in the interface, E124A and Y197C. We present results from X-ray crystallography, enzymatic activity and molecular dynamics simulations for seven proteins, consisting of single, double and triple mutants. The results demonstrate that considering allosteric inhibition of caspase 3 as a shift between discrete 'off-state' or 'on-state' conformations is insufficient. Although His266 is accommodated in the interface, the structural defects are propagated to the active site through a helix on the protein surface. A more comprehensive view of allosteric regulation of caspase 3 requires the representation of an ensemble of inactive states and shows that subtle structural changes lead to the population of the inactive ensemble.
在胱冬酶 3 二聚体界面的变构位点上,缬氨酸 266 突变为组氨酸,会使酶失去活性,模型预测该突变通过阻止活性位点的形成,模拟小分子变构抑制剂的作用。突变与界面上的两个位点的组氨酸 266 相连,分别是 E124A 和 Y197C。我们呈现了来自 X 射线晶体学、酶活性和分子动力学模拟的七种蛋白质的结果,这些蛋白质包括单一、双和三重突变体。结果表明,将胱冬酶 3 的变构抑制视为离散的“关闭状态”或“开启状态”构象之间的转换是不够的。尽管组氨酸 266 可以容纳在界面中,但结构缺陷通过蛋白质表面上的一个螺旋传递到活性位点。更全面地了解胱冬酶 3 的变构调节需要表示一组无活性状态,并表明细微的结构变化导致无活性组的形成。