From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and.
the Department of Biology, University of Texas, Arlington, Texas 76019
J Biol Chem. 2018 Apr 13;293(15):5447-5461. doi: 10.1074/jbc.RA117.000728. Epub 2018 Feb 5.
Caspase-3 activation and function have been well-defined during programmed cell death, but caspase activity, at low levels, is also required for developmental processes such as lymphoid proliferation and erythroid differentiation. Post-translational modification of caspase-3 is one method used by cells to fine-tune activity below the threshold required for apoptosis, but the allosteric mechanism that reduces activity is unknown. Phosphorylation of caspase-3 at a conserved allosteric site by p38-MAPK (mitogen-activated protein kinase) promotes survival in human neutrophils, and the modification of the loop is thought to be a key regulator in many developmental processes. We utilized phylogenetic, structural, and biophysical studies to define the interaction networks that facilitate the allosteric mechanism in caspase-3. We show that, within the modified loop, Ser evolved with the apoptotic caspases, whereas Thr is a more recent evolutionary event in mammalian caspase-3. Substitutions at Ser result in a pH-dependent decrease in dimer stability, and localized changes in the modified loop propagate to the active site of the same protomer through a connecting surface helix. Likewise, a cluster of hydrophobic amino acids connects the conserved loop to the active site of the second protomer. The presence of Thr in the conserved loop introduces a "kill switch" in mammalian caspase-3, whereas the more ancient Ser reduces without abolishing enzyme activity. These data reveal how evolutionary changes in a conserved allosteric site result in a common pathway for lowering activity during development or a more recent cluster-specific switch to abolish activity.
半胱天冬酶-3 的激活和功能在程序性细胞死亡中已经得到了很好的定义,但是在发育过程中,如淋巴细胞增殖和红细胞分化,也需要低水平的半胱天冬酶活性。半胱天冬酶-3 的翻译后修饰是细胞用来微调低于凋亡所需阈值的活性的一种方法,但是降低活性的变构机制尚不清楚。p38-MAPK(丝裂原激活蛋白激酶)对半胱天冬酶-3 的保守变构位点的磷酸化促进了人中性粒细胞的存活,并且认为这种修饰环是许多发育过程中的关键调节剂。我们利用系统发育、结构和生物物理研究来定义促进半胱天冬酶-3 变构机制的相互作用网络。我们表明,在修饰环内,Ser 在凋亡半胱天冬酶中进化,而 Thr 是哺乳动物半胱天冬酶-3 中的一个较新的进化事件。Ser 的取代导致二聚体稳定性的 pH 依赖性降低,并且修饰环中的局部变化通过连接表面螺旋传递到同一前体的活性位点。同样,一组疏水性氨基酸将保守环连接到第二个前体的活性位点。在保守环中存在 Thr 会在哺乳动物半胱天冬酶-3 中引入“致死开关”,而更古老的 Ser 降低但不会完全消除酶活性。这些数据揭示了进化改变保守变构位点如何导致在发育过程中降低活性的常见途径,或者是最近的簇特异性开关以消除活性。