Department of Biological Sciences, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
Department of Industrial Biotechnology, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
Microbiology (Reading). 2012 Aug;158(Pt 8):1933-1941. doi: 10.1099/mic.0.059550-0. Epub 2012 May 18.
The gene coding for the oxygenase component, sadA, of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in Hydrogenophaga sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type sadA in trans restored the ability of the sadA mutant to grow on 4-ABS. The inclusion of sadB and sadD, coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the gfp promoter probe plasmid showed that sadABD was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of sadABD in Escherichia coli led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene sadC was isolated via degenerate PCR and expression of sadC and sadABD in E. coli led to maximal 4-ABS biotransformation. In E. coli, the deletion of sadB completely eliminated dioxygenase activity while the deletion of sadC or sadD led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.
先前通过转座子诱变鉴定了氢噬菌属 PBC 中 4-氨基苯磺酸盐(4-ABS)3,4-加双氧酶的加氧酶成分 sadA 的基因编码。野生型 sadA 在转座中的表达恢复了 sadA 突变体在 4-ABS 上生长的能力。包含 sadB 和 sadD,分别编码假定的谷氨酰胺合成酶样蛋白和植物型铁氧还蛋白,进一步提高了 4-ABS 降解的效率。使用 gfp 启动子探针质粒进行的转录分析表明,sadABD 在 4-ABS 和 4-磺基邻苯二酚上生长时表达。sadABD 在大肠杆菌中的异源表达导致 4-ABS 转化为一种代谢物,该代谢物与 4-磺基邻苯二酚具有相似的保留时间和 UV/vis 图谱。通过简并 PCR 分离出假定的还原酶基因 sadC,sadC 和 sadABD 在大肠杆菌中的表达导致 4-ABS 的最大生物转化。在大肠杆菌中,sadB 的缺失完全消除了加氧酶活性,而 sadC 或 sadD 的缺失导致加氧酶活性降低。SadB 的系统发育分析表明,它与参与苯胺降解途径的谷氨酰胺合成酶样蛋白密切相关。据我们所知,这是在细菌域中发现 4-ABS 芳环羟化的功能遗传成分的首次发现。