Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
J Chem Phys. 2012 May 21;136(19):194111. doi: 10.1063/1.4712397.
An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.
准确确定势能是化学过程计算机模拟的关键步骤,但对于许多系统而言,在分子动力学 (MD) 中实时使用电子结构方法在计算上要求过高。随着势能面 (PES) 的维数增加,构建更有效的原子间势变得更加复杂,并且对于许多系统,所达到的准确性仍然不能令人满意,远远低于第一性原理计算的可靠性。前馈神经网络 (NN) 具有非常灵活的函数形式,近年来已被证明是构建有效 PES 的准确工具。已经为许多材料提出了基于环境相关原子能量贡献的高维 NN 势能。然而,通过更详细的结构描述(例如,以原子对的形式)可以进一步改进这些势能,这可以直接反映原子相互作用并考虑化学环境。我们提出了一种基于原子对的 NN 方法的实现,并将其准确性和性能与使用两种非常不同的系统(甲醇分子和金属铜)的基于原子的 NN 方法进行了比较。我们发现,这两种类型的 NN 势能都可以很好地描述 PES,基于对的方法的准确性略高,因此是在 MD 模拟中处理复杂系统的一种有竞争力的替代方法。