Suppr超能文献

用高维神经网络势表示势能面。

Representing potential energy surfaces by high-dimensional neural network potentials.

作者信息

Behler J

机构信息

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

出版信息

J Phys Condens Matter. 2014 May 7;26(18):183001. doi: 10.1088/0953-8984/26/18/183001. Epub 2014 Apr 23.

Abstract

The development of interatomic potentials employing artificial neural networks has seen tremendous progress in recent years. While until recently the applicability of neural network potentials (NNPs) has been restricted to low-dimensional systems, this limitation has now been overcome and high-dimensional NNPs can be used in large-scale molecular dynamics simulations of thousands of atoms. NNPs are constructed by adjusting a set of parameters using data from electronic structure calculations, and in many cases energies and forces can be obtained with very high accuracy. Therefore, NNP-based simulation results are often very close to those gained by a direct application of first-principles methods. In this review, the basic methodology of high-dimensional NNPs will be presented with a special focus on the scope and the remaining limitations of this approach. The development of NNPs requires substantial computational effort as typically thousands of reference calculations are required. Still, if the problem to be studied involves very large systems or long simulation times this overhead is regained quickly. Further, the method is still limited to systems containing about three or four chemical elements due to the rapidly increasing complexity of the configuration space, although many atoms of each species can be present. Due to the ability of NNPs to describe even extremely complex atomic configurations with excellent accuracy irrespective of the nature of the atomic interactions, they represent a general and therefore widely applicable technique, e.g. for addressing problems in materials science, for investigating properties of interfaces, and for studying solvation processes.

摘要

近年来,利用人工神经网络开发原子间势取得了巨大进展。直到最近,神经网络势(NNP)的适用性还局限于低维系统,但现在这一限制已被克服,高维NNP可用于数千个原子的大规模分子动力学模拟。通过使用电子结构计算的数据调整一组参数来构建NNP,在许多情况下,可以非常高精度地获得能量和力。因此,基于NNP的模拟结果通常与直接应用第一性原理方法获得的结果非常接近。在这篇综述中,将介绍高维NNP的基本方法,特别关注这种方法的适用范围和剩余局限性。开发NNP需要大量的计算工作,因为通常需要进行数千次参考计算。不过,如果要研究的问题涉及非常大的系统或很长的模拟时间,这种开销会很快得到弥补。此外,由于构型空间的复杂性迅速增加,该方法仍然限于包含大约三或四种化学元素的系统,尽管每种元素可以有许多原子。由于NNP能够以极高的精度描述极其复杂的原子构型,而不管原子间相互作用的性质如何,它们代表了一种通用的、因此广泛适用的技术,例如用于解决材料科学中的问题、研究界面性质以及研究溶剂化过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验