Suppr超能文献

利用主成分分析方法预测意大利棕色牛和西门塔尔公牛的奶牛性状的基因组育种值。

Prediction of genomic breeding values for dairy traits in Italian Brown and Simmental bulls using a principal component approach.

机构信息

Dipartimento di Scienze Zootecniche, Università di Sassari, Sassari 07100, Italy.

出版信息

J Dairy Sci. 2012 Jun;95(6):3390-400. doi: 10.3168/jds.2011-4274.

Abstract

The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy.

摘要

与表型相比,大量的标记物是基因组选择中的主要问题之一。在这项工作中,主成分分析被用于减少计算基因组育种值(GEBV)的预测因子数量。在意大利饲养的 2 个牛品种(634 头棕色和 469 头西门塔尔牛)的公牛用 54K Illumina 珠芯片(Illumina Inc.,圣地亚哥,CA)进行了基因分型。在数据编辑后,分别保留了 37254 个和 40179 个单核苷酸多态性(SNP)用于棕色和西门塔尔牛。在 SNP 基因型矩阵上进行的主成分分析分别在这两个品种中提取了 2257 个和 3596 个新变量。根据出生年份对公牛进行排序,创建参考和预测群体。使用 BLUP 模型估计主成分对参考动物去回归证明的影响。结果与使用 SNP 基因型作为预测因子的 BLUP 或 Bayes_A 方法获得的结果进行了比较。所考虑的性状包括牛奶、脂肪和蛋白质产量、脂肪和蛋白质百分比以及体细胞评分。通过混合直接基因组预测和系谱指数,为预测群体获得了 GEBV。在这两个品种中,3 种方法在预测动物中,GEBV 与 EBV 的平方相关系数之间没有观察到实质性差异。主成分分析方法在预测直接基因组值时,将独立变量的数量减少了约 90%,同时大大减少了计算时间,并且没有降低准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验