Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
Eur J Neurosci. 2012 Aug;36(4):2482-92. doi: 10.1111/j.1460-9568.2012.08147.x. Epub 2012 May 23.
The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropylphosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.
内侧苍白球中 γ-氨基丁酸(GABA)转运体亚型 1(GAT-1)或 GABA 转运体亚型 3(GAT-3)转运体阻滞剂[1-(4,4-二苯基-3-丁烯基)-3-哌啶羧酸盐酸盐(SKF 89976A)或 1-[2-[三(4-甲氧基苯基)甲氧基]乙基]-(S)-3-哌啶羧酸(SNAP 5114)]可降低猴苍白球神经元的活性。这种效应可能是通过 GABA 转运体(GAT)阻断后 GABA 溢出激活谷氨酸能末梢中的突触前 GABA(B)异源受体介导的。为了验证这一假设,我们应用全细胞膜片钳技术研究了在gabazine(GABA(A)受体拮抗剂)存在的情况下,SKF 89976A 和 SNAP 5114 对大鼠苍白球切片制备中诱发的兴奋性突触后电流(eEPSC)的影响。在细胞内应用 N-(2,6-二甲基苯甲酰胺基甲基)-三乙铵溴化物(OX314)阻断突触后 GABA(B)受体的条件下,灌流应用 SKF 89976A(10 μM)或 SNAP 5114(10 μM)可降低 eEPSC 的幅度,而对其保持电流和全细胞输入电阻没有显著影响。GAT 阻断对 eEPSC 的抑制作用被 GABA(B)受体拮抗剂(2S)-3-[[(1S)-1-(3,4-二氯苯基)乙基]氨基-2-羟基丙基](苯甲基)膦酸阻断。在存在任何一种 GAT 阻断剂的情况下,eEPSC 的成对脉冲比增加,而微小兴奋性突触后电流的频率(而不是幅度)降低,表明存在突触前效应。这些结果表明,突触释放的 GABA 可以通过 GAT-1 或 GAT-3 阻断后激活突触前 GABA(B)异源受体来抑制谷氨酸能传递。总之,我们的发现表明,内侧苍白球中谷氨酸能亚丘脑传入的突触前 GABA(B)异源受体对 GAT 失活诱导的细胞外 GABA 增加敏感,这表明 GAT 阻断可能是帕金森病中过度活跃的亚丘脑苍白球活动减少的潜在机制。