Suppr超能文献

新皮质锥体细胞:一个具有树突钙电导的模型可重现重复放电和癫痫行为。

Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior.

作者信息

Traub R D

出版信息

Brain Res. 1979 Sep 14;173(2):243-57. doi: 10.1016/0006-8993(79)90625-5.

Abstract

A computer model of a neocortical pyramidal cell has been constructed using ideas similar to those used for hippocampal pyramidal cells. This model has been applied to the study of (a) repetitive firing, and (b) the paroxysmal depolarizing shift (PDS), an important intracellular event during seizures. Although calcium spikes have not been demonstrated directly in neocortical cells, we have postulated (by analogy with hippocampal pyramidal cells) a dendritic calcium conductance and a 'slow potassium' conductance modulated by intracellular calcium ion. With these dendritic ionic conductances, the model is able to reproduce the following experimental features of neocortical pyramidal cells: the afterdepolarization and succeeding afterhyperpolarization after an antidromic spike, and the f-I (firing rate-injected current) curve. Some of the differences between 'fast' and 'slow' pyramidal tract neurons (PTNs) -- narrower spikes and a steeper f-I curve in the fast PTNs -- may be explained by differences in Hodgkin-Huxley potassium kinetics between the two kinds of cell. The same model which faithfully reproduces repetitive firing behavior also reproduces (given appropriate synaptic inputs) the following intracellular events recording during epileptic seizures: (a) a burst of action potentials superimposed on and followed by a PDS, and (b) rapid repetitive firing succeeded by an IPSP. Thus, a single set of parameters can reporduce both normal physiological behavior and 'epileptic' behavior: the particular behavior seen depending on how the cell is stimulated. This overall result is the same as for our model of the CA1 hippocampal cell. It suggests that certain acutely acting epileptogenic agents, e.g. penicillin, may act by increasing synaptic input (perhaps both excitatory and inhibitory) to pyramidal cells, rather than by altering their membrane properties. As in our CA1 hippocampal cell model, bursting seems to be a phenomenon generated by the apical dendrite.

摘要

利用与构建海马锥体细胞模型相似的理念,构建了新皮层锥体细胞的计算机模型。该模型已应用于以下研究:(a)重复放电;(b)阵发性去极化漂移(PDS),这是癫痫发作期间一个重要的细胞内事件。尽管尚未在新皮层细胞中直接证实钙峰的存在,但我们(通过与海马锥体细胞类比)推测存在一种树突钙电导和一种受细胞内钙离子调制的“慢钾”电导。借助这些树突离子电导,该模型能够重现新皮层锥体细胞的以下实验特征:逆向动作电位后的去极化后电位及随后的超极化后电位,以及放电频率-注入电流(f-I)曲线。“快”和“慢”锥体束神经元(PTN)之间的一些差异——快PTN的动作电位更窄且f-I曲线更陡——可能是由这两种细胞之间霍奇金-赫胥黎钾动力学的差异所解释。忠实地重现重复放电行为的同一模型,在给予适当的突触输入时,也能重现癫痫发作期间记录到的以下细胞内事件:(a)叠加在PDS上并跟随其后的一阵动作电位;(b)快速重复放电后跟随一个抑制性突触后电位(IPSP)。因此,单一的一组参数能够重现正常生理行为和“癫痫”行为:具体表现取决于细胞的刺激方式。这一总体结果与我们的CA1海马细胞模型相同。这表明某些急性起作用的致癫痫剂,如青霉素,可能是通过增加对锥体细胞的突触输入(可能包括兴奋性和抑制性输入)来起作用,而不是通过改变它们的膜特性。与我们的CA1海马细胞模型一样,爆发似乎是由顶端树突产生的一种现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验