World-Leading Drug Discovery Research Center, Kyoto University, Kyoto, Japan.
Proteomics. 2012 Jun;12(12):2024-35. doi: 10.1002/pmic.201100666.
S-Nitrosoglutathione reductase (GSNOR) is a key regulator of protein S-nitrosylation, the covalent modification of cysteine residues by nitric oxide that can affect activities of many proteins. We recently discovered that excessive S-nitrosylation from GSNOR deficiency in mice under inflammation inactivates the key DNA repair protein O(6) -alkylguanine-DNA alkyltransferase and promotes both spontaneous and carcinogen-induced hepatocellular carcinoma. To explore further the mechanism of tumorigenesis due to GSNOR deficiency, we compared the protein expression profiles in the livers of wild-type and GSNOR-deficient (GSNOR(-/-) ) mice that were challenged with lipopolysaccharide to induce inflammation and expression of inducible nitric oxide synthase (iNOS). Two-dimensional difference gel electrophoresis analysis identified 38 protein spots of significantly increased intensity and 31 protein spots of significantly decreased intensity in the GSNOR(-/-) mice compared to those in the wild-type mice. We subsequently identified 19 upregulated and 19 downregulated proteins in GSNOR(-/-) mice using mass spectrometry. Immunoblot analysis confirmed in GSNOR(-/-) mice a large increase in the expression of the pro-inflammatory mediator S100A9, a protein previously implicated in human liver carcinogenesis. We also found a decrease in the expression of multiple members of the protein disulfide-isomerase (PDI) family and an alteration in the expression pattern of the endoplasmic reticulum (ER) chaperones in GSNOR(-/-) mice. Furthermore, altered expression of these proteins from GSNOR deficiency was prevented in mice lacking both GSNOR and iNOS. In addition, we detected S-nitrosylation of two members of the PDI protein family. These results suggest that S-nitrosylation resulting from GSNOR deficiency may promote carcinogenesis under inflammatory conditions in part through the disruption of inflammatory and ER stress responses.
谷胱甘肽 S-亚硝基转移酶(GSNOR)是蛋白质 S-亚硝基化的关键调节因子,是一氧化氮对半胱氨酸残基的共价修饰,可影响许多蛋白质的活性。我们最近发现,在炎症条件下,由于 GSNOR 缺乏导致的 S-亚硝基化过度会使关键的 DNA 修复蛋白 O(6)-烷基鸟嘌呤-DNA 烷基转移酶失活,并促进自发性和致癌物诱导的肝癌发生。为了进一步探讨 GSNOR 缺乏导致肿瘤发生的机制,我们比较了野生型和 GSNOR 缺陷型(GSNOR(-/-))小鼠在脂多糖诱导炎症和诱导型一氧化氮合酶(iNOS)表达时肝脏的蛋白质表达谱。二维差异凝胶电泳分析发现,与野生型小鼠相比,GSNOR(-/-)小鼠中有 38 个蛋白质点的强度显著增加,31 个蛋白质点的强度显著降低。随后,我们使用质谱法鉴定了 GSNOR(-/-)小鼠中 19 个上调和 19 个下调的蛋白质。免疫印迹分析证实,在 GSNOR(-/-)小鼠中,促炎介质 S100A9 的表达显著增加,S100A9 蛋白先前被认为与人类肝癌的发生有关。我们还发现,GSNOR(-/-)小鼠中多种蛋白二硫键异构酶(PDI)家族成员的表达减少,内质网(ER)伴侣蛋白的表达模式发生改变。此外,在缺乏 GSNOR 和 iNOS 的小鼠中,GSNOR 缺乏导致这些蛋白表达的改变得到了预防。此外,我们还检测到两种 PDI 蛋白家族成员的 S-亚硝基化。这些结果表明,GSNOR 缺乏导致的 S-亚硝基化可能通过破坏炎症和 ER 应激反应,在炎症条件下促进肿瘤发生。