Montagna Costanza, Di Giacomo Giuseppina, Rizza Salvatore, Cardaci Simone, Ferraro Elisabetta, Grumati Paolo, De Zio Daniela, Maiani Emiliano, Muscoli Carolina, Lauro Filomena, Ilari Sara, Bernardini Sergio, Cannata Stefano, Gargioli Cesare, Ciriolo Maria R, Cecconi Francesco, Bonaldo Paolo, Filomeni Giuseppe
1 Research Center , IRCCS San Raffaele Pisana, Rome, Italy .
Antioxid Redox Signal. 2014 Aug 1;21(4):570-87. doi: 10.1089/ars.2013.5696. Epub 2014 May 13.
Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs.
We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state.
Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype.
These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.
一氧化氮(NO)的产生与肌肉收缩、生长和萎缩以及神经病变的发生有关。然而,NO作用机制的许多方面尚未阐明,主要是关于其在肌肉萎缩中的作用。值得注意的是,与NO产生相关的神经肌肉萎缩是否取决于酪氨酸硝化或S-亚硝基硫醇(SNOs)的形成仍是一个有争议的问题。在此,我们旨在通过表征亚硝基谷胱甘肽还原酶基因敲除(GSNOR-KO)小鼠的神经肌肉表型来评估这个问题,这些小鼠保持产生NO的能力,但无法还原SNOs。
我们证明,在没有任何蛋白质硝化迹象的情况下,年轻的GSNOR-KO小鼠由于肌肉质量丧失、纤维尺寸减小和神经病变行为而出现神经肌肉萎缩。特别是,GSNOR-KO小鼠的神经轴突数量显著减少,髓鞘出现紊乱和减少,导致神经病变表型的显著发展。在GSNOR-KO肌纤维和肌管中,线粒体出现碎片化和去极化,N-乙酰半胱氨酸处理可逆转这些情况。然而,尽管诱导了萎缩基因转录并激活了大量自噬,但未观察到受损线粒体的清除。这些事件,连同凋亡标志物的基础增加,导致神经病变和肌病状态的持续存在。
我们的研究提供了首个证据,即GSNOR缺乏仅影响SNOs的还原而不改变硝基酪氨酸水平,会导致具有临床相关性的神经肌肉表型。
这些发现为GSNOR和S-亚硝基化参与与病理状态(如糖尿病和癌症)相关的神经肌肉萎缩和神经病理性疼痛提供了新的见解。