Department of Microbiology, Institute of Wetland and Water Research (IWWR), Faculty of Science, Radboud University of Nijmegen, Nijmegen, The Netherlands.
Adv Microb Physiol. 2012;60:211-62. doi: 10.1016/B978-0-12-398264-3.00003-6.
Anaerobic ammonium-oxidizing (anammox) bacteria are the last major addition to the nitrogen-cycle (N-cycle). Because of the presumed inert nature of ammonium under anoxic conditions, the organisms were deemed to be nonexistent until about 15 years ago. They, however, appear to be present in virtually any anoxic place where fixed nitrogen (ammonium, nitrate, nitrite) is found. In various mar`ine ecosystems, anammox bacteria are a major or even the only sink for fixed nitrogen. According to current estimates, about 50% of all nitrogen gas released into the atmosphere is made by these bacteria. Besides this, the microorganisms may be very well suited to be applied as an efficient, cost-effective, and environmental-friendly alternative to conventional wastewater treatment for the removal of nitrogen. So far, nine different anammox species divided over five genera have been enriched, but none of these are in pure culture. This number is only a modest reflection of a continuum of species that is suggested by 16S rRNA analyses of environmental samples. In their environments, anammox bacteria thrive not just by competition, but rather by delicate metabolic interactions with other N-cycle organisms. Anammox bacteria owe their position in the N-cycle to their unique property to oxidize ammonium in the absence of oxygen. Recent research established that they do so by activating the compound into hydrazine (N(2)H(4)), using the oxidizing power of nitric oxide (NO). NO is produced by the reduction of nitrite, the terminal electron acceptor of the process. The forging of the N-N bond in hydrazine is catalyzed by hydrazine synthase, a fairly slow enzyme and its low activity possibly explaining the slow growth rates and long doubling times of the organisms. The oxidation of hydrazine results in the formation of the end product (N(2)), and electrons that are invested both in electron-transport phosphorylation and in the regeneration of the catabolic intermediates (N(2)H(4), NO). Next to this, the electrons provide the reducing power for CO(2) fixation. The electron-transport phosphorylation machinery represents another unique characteristic, as it is most likely localized on a special cell organelle, the anammoxosome, which is surrounded by a glycerolipid bilayer of ladder-like ("ladderane") cyclobutane and cyclohexane ring structures. The use of ammonium and nitrite as sole substrates might suggest a simple metabolic system, but the contrary seems to be the case. Genome analysis and ongoing biochemical research reveal an only partly understood redundancy in respiratory systems, featuring an unprecedented collection of cytochrome c proteins. The presence of the respiratory systems lends anammox bacteria a metabolic versatility that we are just beginning to appreciate. A specialized use of substrates may provide different anammox species their ecological niche.
厌氧氨氧化(anammox)细菌是氮循环(N 循环)的最新重大发现。由于在缺氧条件下铵被认为是惰性的,这些生物体直到大约 15 年前才被认为是不存在的。然而,它们似乎存在于任何存在固定氮(铵、硝酸盐、亚硝酸盐)的缺氧环境中。在各种海洋生态系统中,厌氧氨氧化细菌是固定氮的主要或甚至唯一的汇。根据目前的估计,约有 50%释放到大气中的氮气是由这些细菌产生的。此外,这些微生物可能非常适合作为传统废水处理的有效、经济高效且环保的替代方法,用于去除氮。到目前为止,已经富集了五个属的九个不同的厌氧氨氧化物种,但没有一个是纯培养的。这个数字只是环境样本 16S rRNA 分析所暗示的连续物种的适度反映。在它们的环境中,厌氧氨氧化细菌不仅通过竞争,而且通过与其他 N 循环生物的微妙代谢相互作用而茁壮成长。厌氧氨氧化细菌在 N 循环中的地位归功于它们在没有氧气的情况下氧化铵的独特性质。最近的研究表明,它们通过将化合物激活为联氨(N(2)H(4))来实现这一点,使用一氧化氮(NO)的氧化能力。NO 是通过亚硝酸盐的还原产生的,亚硝酸盐是该过程的末端电子受体。联氨中的 N-N 键的形成由联氨合酶催化,这是一种相当缓慢的酶,其低活性可能解释了生物体的缓慢生长速度和长倍增时间。联氨的氧化导致终产物(N(2))的形成,以及投入电子传输磷酸化和代谢中间产物(N(2)H(4)、NO)再生的电子。除此之外,电子为 CO(2)固定提供还原能力。电子传输磷酸化机制代表了另一个独特的特征,因为它很可能定位于一个特殊的细胞器,即厌氧氨氧化体,它被 ladderane 型甘油磷脂双层包围, ladderane 型甘油磷脂由梯烷和环己烷环结构组成。仅使用铵和亚硝酸盐作为唯一底物可能表明存在简单的代谢系统,但事实似乎并非如此。基因组分析和正在进行的生化研究揭示了呼吸系统中部分理解的冗余,其中包含一组前所未有的细胞色素 c 蛋白。呼吸系统的存在使厌氧氨氧化细菌具有代谢多功能性,我们才刚刚开始意识到这一点。对底物的专门利用可能为不同的厌氧氨氧化物种提供其生态位。