Suppr超能文献

一种用于计算可变总最大日负荷和不确定性评估的贝叶斯方法。

A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment.

机构信息

Department of Natural Resources, College of Environment and Natural Resources, Zhejiang University, Hangzhou 310058, China.

出版信息

Sci Total Environ. 2012 Jul 15;430:59-67. doi: 10.1016/j.scitotenv.2012.04.042. Epub 2012 May 24.

Abstract

To account for both variability and uncertainty in nonpoint source pollution, one dimensional water quality model was integrated with Bayesian statistics and load duration curve methods to develop a variable total maximum daily load (TMDL) for total nitrogen (TN). Bayesian statistics was adopted to inversely calibrate the unknown parameters in the model, i.e., area-specific export rate (E) and in-stream loss rate coefficient (K) for TN, from the stream monitoring data. Prior distributions for E and K based on published measurements were developed to support Bayesian parameter calibration. Then the resulting E and K values were used in water quality model for simulation of catchment TN export load, TMDL and required load reduction along with their uncertainties in the ChangLe River agricultural watershed in eastern China. Results indicated that the export load, TMDL and required load reduction for TN synchronously increased with increasing stream water discharge. The uncertainties associated with these estimates also presented temporal variability with higher uncertainties for the high flow regime and lower uncertainties for the low flow regime. To assure 90% compliance with the targeted in-stream TN concentration of 2.0mgL(-1), the required load reduction was determined to be 1.7 × 10(3), 4.6 × 10(3), and 14.6 × 10(3)kg TNd (-1) for low, median and high flow regimes, respectively. The integrated modeling approach developed in this study allows decision makers to determine the required load reduction for different TN compliance levels while incorporating both flow-dependent variability and uncertainty assessment to support practical adaptive implementation of TMDL programs.

摘要

为了同时考虑非点源污染的变异性和不确定性,将一维水质模型与贝叶斯统计和负荷持续曲线方法相结合,为总氮 (TN) 开发了可变的总最大日负荷 (TMDL)。贝叶斯统计用于从河流监测数据中反演模型中未知参数,即特定区域的出口率 (E) 和 TN 的河流损耗率系数 (K)。基于已发表的测量结果,为 E 和 K 开发了先验分布,以支持贝叶斯参数校准。然后,将得到的 E 和 K 值用于水质模型,模拟中国东部昌乐河流域 TN 出口负荷、TMDL 和所需的负荷削减及其不确定性。结果表明,出口负荷、TMDL 和 TN 所需的负荷削减随河流流量的增加而同步增加。这些估计的不确定性也呈现出时间变化性,高流量期的不确定性较高,低流量期的不确定性较低。为了保证 90%符合目标河流中 TN 浓度 2.0mgL(-1),分别确定低、中、高流量期所需的 TN 负荷削减量为 1.7×10(3)、4.6×10(3)和 14.6×10(3)kg TNd(-1)。本研究中开发的综合建模方法允许决策者确定不同 TN 合规水平所需的负荷削减量,同时考虑到流量相关的变异性和不确定性评估,以支持 TMDL 计划的实际自适应实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验