Suppr超能文献

利用关联网络分析大型生物数据集。

Analyzing large biological datasets with association networks.

机构信息

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Nucleic Acids Res. 2012 Sep 1;40(17):e131. doi: 10.1093/nar/gks403. Epub 2012 May 25.

Abstract

Due to advances in high-throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches that process collected data into new knowledge in a timely manner. In this study, we propose a computational framework for discovering modular structure, relationships and regularities in complex data. The framework utilizes a semantic-preserving vocabulary to convert records of biological annotations of an object, such as an organism, gene, chemical or sequence, into networks (Anets) of the associated annotations. An association between a pair of annotations in an Anet is determined by the similarity of their co-occurrence pattern with all other annotations in the data. This feature captures associations between annotations that do not necessarily co-occur with each other and facilitates discovery of the most significant relationships in the collected data through clustering and visualization of the Anet. To demonstrate this approach, we applied the framework to the analysis of metadata from the Genomes OnLine Database and produced a biological map of sequenced prokaryotic organisms with three major clusters of metadata that represent pathogens, environmental isolates and plant symbionts.

摘要

由于高通量生物技术的进步,生物信息正以前所未有的速度被收集到数据库中,这就需要新的计算方法,以便及时将收集到的数据转化为新知识。在本研究中,我们提出了一个用于发现复杂数据中的模块结构、关系和规律的计算框架。该框架利用语义保留词汇表将对象(如生物体、基因、化学物质或序列)的生物注释记录转换为相关注释的网络(Anets)。Anet 中一对注释之间的关联由它们与数据中所有其他注释的共同出现模式的相似性决定。这一特征捕捉了不一定相互共现的注释之间的关联,并通过 Anet 的聚类和可视化促进了对所收集数据中最重要关系的发现。为了演示这种方法,我们将该框架应用于 Genomes OnLine Database 的元数据分析,并生成了一个具有三个主要元数据簇的已测序原核生物的生物图谱,这三个簇代表病原体、环境分离物和植物共生体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33a/3458522/319f5b31736a/gks403f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验