Suppr超能文献

链霉菌在复杂培养基上生长的基因组代谢通量分析。

Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.

机构信息

Chemical and Biochemical Process Technology and Control Section, Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium.

出版信息

J Biotechnol. 2012 Sep 15;161(1):1-13. doi: 10.1016/j.jbiotec.2012.04.010. Epub 2012 May 26.

Abstract

Constraint-based metabolic modeling comprises various excellent tools to assess experimentally observed phenotypic behavior of micro-organisms in terms of intracellular metabolic fluxes. In combination with genome-scale metabolic networks, micro-organisms can be investigated in much more detail and under more complex environmental conditions. Although complex media are ubiquitously applied in industrial fermentations and are often a prerequisite for high protein secretion yields, such multi-component conditions are seldom investigated using genome-scale flux analysis. In this paper, a systematic and integrative approach is presented to determine metabolic fluxes in Streptomyces lividans TK24 grown on a nutritious and complex medium. Genome-scale flux balance analysis and randomized sampling of the solution space are combined to extract maximum information from exometabolome profiles. It is shown that biomass maximization cannot predict the observed metabolite production pattern as such. Although this cellular objective commonly applies to batch fermentation data, both input and output constraints are required to reproduce the measured biomass production rate. Rich media hence not necessarily lead to maximum biomass growth. To eventually identify a unique intracellular flux vector, a hierarchical optimization of cellular objectives is adopted. Out of various tested secondary objectives, maximization of the ATP yield per flux unit returns the closest agreement with the maximum frequency in flux histograms. This unique flux estimation is hence considered as a reasonable approximation for the biological fluxes. Flux maps for different growth phases show no active oxidative part of the pentose phosphate pathway, but NADPH generation in the TCA cycle and NADPH transdehydrogenase activity are most important in fulfilling the NADPH balance. Amino acids contribute to biomass growth by augmenting the pool of available amino acids and by boosting the TCA cycle, particularly when using glutamate and aspartate. Depletion of glutamate and aspartate causes a distinct shift in fluxes of the central carbon and nitrogen metabolism. In the current work, hurdles encountered in flux analysis at a genome-scale level are addressed using hierarchical flux balance analysis and uniform sampling of the constrained solution space. This general framework can now be adopted in further studies of S. lividans, e.g., as a host for heterologous protein production.

摘要

基于约束的代谢建模包含各种优秀的工具,可根据细胞内代谢通量评估微生物的实验观察到的表型行为。结合基因组规模的代谢网络,可以更详细地研究微生物,并在更复杂的环境条件下进行研究。尽管复杂的培养基在工业发酵中被广泛应用,并且通常是高蛋白质分泌产量的前提条件,但使用基因组规模通量分析很少研究这种多组分条件。在本文中,提出了一种系统和综合的方法来确定在营养丰富且复杂的培养基上生长的链霉菌 TK24 的代谢通量。将基因组规模通量平衡分析和解决方案空间的随机抽样相结合,从外代谢组谱中提取最大信息。结果表明,生物量最大化不能预测观察到的代谢产物产生模式。虽然这种细胞目标通常适用于批式发酵数据,但需要输入和输出约束才能再现测量的生物量生产速率。因此,丰富的培养基不一定会导致最大的生物量生长。为了最终确定唯一的细胞内通量向量,采用细胞目标的分层优化。在各种测试的次要目标中,每通量单位的 ATP 产率最大化返回与通量直方图中最大频率最接近的一致性。因此,这种独特的通量估计被认为是生物通量的合理近似。不同生长阶段的通量图显示戊糖磷酸途径没有活跃的氧化部分,但 TCA 循环中的 NADPH 生成和 NADPH 转氢酶活性对于满足 NADPH 平衡最为重要。氨基酸通过增加可用氨基酸池和促进 TCA 循环来促进生物量的生长,特别是当使用谷氨酸和天冬氨酸时。谷氨酸和天冬氨酸的耗尽会导致中心碳和氮代谢的通量发生明显变化。在当前的工作中,使用分层通量平衡分析和受约束的解决方案空间的均匀采样来解决基因组规模通量分析中遇到的障碍。这个通用框架现在可以在进一步的链霉菌研究中采用,例如作为异源蛋白生产的宿主。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验