Suppr超能文献

一种用于求解四面体域上的程函方程的快速迭代方法。

A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.

作者信息

Fu Zhisong, Kirby Robert M, Whitaker Ross T

机构信息

The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112.

出版信息

SIAM J Sci Comput. 2013;35(5):c473-c494. doi: 10.1137/120881956.

Abstract

Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically , but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains . Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers.

摘要

为程函方程及其多种变体生成数值解在自然科学和计算科学中都有广泛的应用。在前沿的并行架构上实现高效求解器需要新的算法,这些算法可能在理论上并非最优,但旨在允许异步解更新且具有有限的内存访问模式。本文提出了一种在完全非结构化四面体网格上求解程函方程的并行算法。该方法适用于在现代大规模SIMD架构(如图形处理器)上发现的细粒度并行类型,并考虑了这些计算平台的特殊约束和能力。这项工作建立在先前在三角形网格上求解这些方程的工作基础之上;在本文中,我们对先前的二维策略进行了调整和扩展,以适应三维非结构化四面体化区域。这些新进展包括一种针对四面体网格的数据压缩局部更新策略,该策略可在串行和并行架构上提供解,并推广到非均匀、各向异性速度函数。我们还提出了两种新的更新方案,专门用于减轻向三维转换时自然出现的数据增加问题,以及以保持某种状态的方式将数据有效映射到并行SIMD处理器所需的数据结构。最后,我们给出了在单个CPU以及具有共享内存和SIMD架构的多核CPU上的实现描述,并与最先进的程函求解器进行了对比结果。

相似文献

1
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
SIAM J Sci Comput. 2013;35(5):c473-c494. doi: 10.1137/120881956.
2
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
SIAM J Sci Comput. 2011;33(5):2468-2488. doi: 10.1137/100788951. Epub 2011 Oct 6.
3
Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5699-703. doi: 10.1073/pnas.090060097.
4
Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains.
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1563-74. doi: 10.1109/TPAMI.2007.1154.
5
Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and Static Hamilton-Jacobi Equations.
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4177-4188. doi: 10.1109/TPAMI.2020.2993500. Epub 2021 Oct 1.
6
Parallelisation of equation-based simulation programs on heterogeneous computing systems.
PeerJ Comput Sci. 2018 Aug 13;4:e160. doi: 10.7717/peerj-cs.160. eCollection 2018.
7
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
J Comput Biol. 1996 Winter;3(4):503-28. doi: 10.1089/cmb.1996.3.503.
8
Resource-Efficient Use of Modern Processor Architectures For Numerically Solving Cardiac Ionic Cell Models.
Front Physiol. 2022 Jun 28;13:904648. doi: 10.3389/fphys.2022.904648. eCollection 2022.
9
Streaming simplification of tetrahedral meshes.
IEEE Trans Vis Comput Graph. 2007 Jan-Feb;13(1):145-55. doi: 10.1109/TVCG.2007.21.
10
SIMD Optimization of Linear Expressions for Programmable Graphics Hardware.
Comput Graph Forum. 2004 Dec 1;23(4):697-714. doi: 10.1111/j.1467-8659.2004.00803.x.

引用本文的文献

2
Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification.
Front Physiol. 2022 Mar 7;13:757159. doi: 10.3389/fphys.2022.757159. eCollection 2022.
3
GEASI: Geodesic-based earliest activation sites identification in cardiac models.
Int J Numer Method Biomed Eng. 2021 Aug;37(8):e3505. doi: 10.1002/cnm.3505. Epub 2021 Jul 13.
5
An Inverse Eikonal Method for Identifying Ventricular Activation Sequences from Epicardial Activation Maps.
J Comput Phys. 2020 Jul 3;419. doi: 10.1016/j.jcp.2020.109700. eCollection 2020 Oct 15.
6
A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations.
PLoS One. 2020 Jun 26;15(6):e0235145. doi: 10.1371/journal.pone.0235145. eCollection 2020.
7
The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium.
Biomech Model Mechanobiol. 2020 Jun;19(3):1015-1034. doi: 10.1007/s10237-019-01268-5. Epub 2019 Dec 4.

本文引用的文献

1
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
SIAM J Sci Comput. 2011;33(5):2468-2488. doi: 10.1137/100788951. Epub 2011 Oct 6.
2
Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1480-7. doi: 10.1109/TVCG.2007.70571.
3
A fast marching level set method for monotonically advancing fronts.
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5. doi: 10.1073/pnas.93.4.1591.
4
Ordered upwind methods for static Hamilton-Jacobi equations.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11069-74. doi: 10.1073/pnas.201222998.
5
Computing geodesic paths on manifolds.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8431-5. doi: 10.1073/pnas.95.15.8431.
6
Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model.
Math Biosci. 1993 Feb;113(2):145-209. doi: 10.1016/0025-5564(93)90001-q.
7
An eikonal-curvature equation for action potential propagation in myocardium.
J Math Biol. 1991;29(7):629-51. doi: 10.1007/BF00163916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验