Suppr超能文献

结旁区 KCNQ 通道激活导致连接区 Kv1.1 缺失的迷走神经轴突单纤维超兴奋性的跨室腔逆转。

Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels.

机构信息

J. L. Noebels: Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB220, Houston, TX 77030, USA.

出版信息

J Physiol. 2012 Aug 15;590(16):3913-26. doi: 10.1113/jphysiol.2012.235606. Epub 2012 May 28.

Abstract

Kv1.1 channels cluster at juxtaparanodes of myelinated axons in the vagus nerve, the primary conduit for parasympathetic innervation of the heart. Kcna1-null mice lacking these channels exhibit neurocardiac dysfunction manifested by atropine-sensitive atrioventricular conduction blocks and bradycardia that may culminate in sudden death. To evaluate whether loss of Kv1.1 channels alters electrogenic properties within the nerve, we compared the intrinsic excitability of single myelinated A- and Aδ-axons from excised cervical vagus nerves of young adult Kcna1-null mice and age-matched, wild-type littermate controls. Although action potential shapes and relative refractory periods varied little between genotypes, Kv1.1-deficient large myelinated A-axons showed a fivefold increase in susceptibility to 4-aminopyridine (4-AP)-induced spontaneous ectopic firing. Since the repolarizing currents of juxtaparanodal Kv1 channels and nodal KCNQ potassium channels both act to dampen repetitive activity, we examined whether augmenting nodal KCNQ activation could compensate for Kv1.1 loss and reverse the spontaneous hyperexcitability in Kv1.1-deficient A-axons. Application of the selective KCNQ opener flupirtine raised A-axon firing threshold while profoundly suppressing 4-AP-induced spontaneous firing, demonstrating a functional synergy between the two compartments. We conclude that juxtaparanodal Kv1.1-deficiency causes intrinsic hyperexcitability in large myelinated axons in vagus nerve which could contribute to autonomic dysfunction in Kcna1-null mice, and that KCNQ openers reveal a transcompartmental synergy between Kv1 and KCNQ channels in regulating axonal excitability.

摘要

Kv1.1 通道在迷走神经有髓轴突的旁邻节聚集,迷走神经是心脏副交感神经支配的主要途径。缺乏这些通道的 Kv1.1 敲除小鼠表现出神经心脏功能障碍,表现为阿托品敏感的房室传导阻滞和心动过缓,可能导致猝死。为了评估 Kv1.1 通道的缺失是否改变神经内的电生理特性,我们比较了来自年轻成年 Kv1.1 敲除小鼠和年龄匹配的野生型同窝对照的颈迷走神经离体髓鞘 A-和 Aδ-轴突的固有兴奋性。尽管动作电位形状和相对不应期在基因型之间变化不大,但 Kv1.1 缺陷的大髓鞘 A-轴突对 4-氨基吡啶(4-AP)诱导的自发性异位放电的敏感性增加了五倍。由于旁邻节 Kv1 通道的去极化电流和节段性 KCNQ 钾通道的去极化电流都有助于抑制复发性活动,我们研究了增强节段性 KCNQ 激活是否可以补偿 Kv1.1 的缺失并逆转 Kv1.1 缺陷 A-轴突的自发性过度兴奋。选择性 KCNQ 开放剂 flupirtine 的应用提高了 A-轴突的放电阈值,同时强烈抑制 4-AP 诱导的自发性放电,证明了两个隔室之间的功能协同作用。我们得出结论,旁邻节 Kv1.1 缺陷导致迷走神经中大髓鞘轴突的固有过度兴奋,这可能导致 Kv1.1 敲除小鼠的自主神经功能障碍,而 KCNQ 开放剂揭示了 Kv1 和 KCNQ 通道在调节轴突兴奋性方面的跨隔室协同作用。

相似文献

3
Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy.
Epilepsia. 2018 Feb;59(2):358-368. doi: 10.1111/epi.13978. Epub 2017 Dec 19.
6
Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
J Physiol. 2006 Oct 1;576(Pt 1):235-56. doi: 10.1113/jphysiol.2006.111336. Epub 2006 Jul 13.
8
The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP).
Epilepsia. 2014 Nov;55(11):1808-16. doi: 10.1111/epi.12793. Epub 2014 Nov 6.

引用本文的文献

1
LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202211031. Epub 2023 Feb 24.
2
Emx1-Cre Is Expressed in Peripheral Autonomic Ganglia That Regulate Central Cardiorespiratory Functions.
eNeuro. 2022 Oct 17;9(5). doi: 10.1523/ENEURO.0093-22.2022. Print 2022 Sep-Oct.
3
When Apnea Turns Terminal: When, How, Why?
Epilepsy Curr. 2021 Aug 9;21(6):449-451. doi: 10.1177/15357597211036815. eCollection 2021 Nov-Dec.
4
Kv1.1 subunits localize to cardiorespiratory brain networks in mice where their absence induces astrogliosis and microgliosis.
Mol Cell Neurosci. 2021 Jun;113:103615. doi: 10.1016/j.mcn.2021.103615. Epub 2021 Apr 24.
7
Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation.
Neurobiol Dis. 2020 Apr;137:104759. doi: 10.1016/j.nbd.2020.104759. Epub 2020 Jan 21.
8
Kv1.1 channel subunits in the control of neurocardiac function.
Channels (Austin). 2019 Dec;13(1):299-307. doi: 10.1080/19336950.2019.1635864.
10
p53-Sensitive Epileptic Behavior and Inflammation in Hypomorphic Mice.
Front Genet. 2018 Nov 27;9:581. doi: 10.3389/fgene.2018.00581. eCollection 2018.

本文引用的文献

1
The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy.
Epilepsia. 2012 Mar;53(3):412-24. doi: 10.1111/j.1528-1167.2011.03365.x. Epub 2012 Jan 5.
2
3
The C-terminal domain of ßIV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier.
J Physiol. 2010 Dec 1;588(Pt 23):4719-30. doi: 10.1113/jphysiol.2010.196022. Epub 2010 Oct 20.
4
Composition, assembly, and maintenance of excitable membrane domains in myelinated axons.
Semin Cell Dev Biol. 2011 Apr;22(2):178-84. doi: 10.1016/j.semcdb.2010.09.010. Epub 2010 Oct 12.
7
A novel KCNA1 mutation associated with global delay and persistent cerebellar dysfunction.
Mov Disord. 2009 Apr 15;24(5):778-82. doi: 10.1002/mds.22467.
8
Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds.
Trends Pharmacol Sci. 2008 Feb;29(2):99-107. doi: 10.1016/j.tips.2007.11.010. Epub 2008 Jan 18.
10
KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier.
J Physiol. 2006 May 15;573(Pt 1):17-34. doi: 10.1113/jphysiol.2006.106815. Epub 2006 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验