Suppr超能文献

多层 DNA 折纸包装在六边形和混合晶格上。

Multilayer DNA origami packed on hexagonal and hybrid lattices.

机构信息

Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Am Chem Soc. 2012 Jan 25;134(3):1770-4. doi: 10.1021/ja209719k. Epub 2012 Jan 13.

Abstract

"Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology.

摘要

“有支架的 DNA 折纸术”已被证明是一种构建具有高复杂度的二维或三维物体的强大且高效的方法。多层 DNA 折纸术已通过沿着蜂巢晶格几何形状或正方形晶格几何形状包装的螺旋得到证明。在这里,我们报告了成功折叠具有在密堆积六边形晶格上排列的螺旋的多层 DNA 折纸术。这种排列方式产生了比以前显示的更高的螺旋包装密度,因此具有更高的空间寻址分辨率。我们还展示了混合多层 DNA 折纸术,其中螺旋的蜂巢晶格、正方形晶格和六边形晶格的包装都在一个设计中。螺旋的六边形密堆积的可用性扩展了我们使用 DNA 纳米技术构建复杂结构的能力。

相似文献

1
Multilayer DNA origami packed on hexagonal and hybrid lattices.
J Am Chem Soc. 2012 Jan 25;134(3):1770-4. doi: 10.1021/ja209719k. Epub 2012 Jan 13.
2
Multilayer DNA origami packed on a square lattice.
J Am Chem Soc. 2009 Nov 4;131(43):15903-8. doi: 10.1021/ja906381y.
3
Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
J Am Chem Soc. 2016 Jun 22;138(24):7733-40. doi: 10.1021/jacs.6b03966. Epub 2016 Jun 9.
4
Cation-dependent assembly of hexagonal DNA origami lattices on SiO surfaces.
Nanoscale. 2023 Aug 10;15(31):12894-12906. doi: 10.1039/d3nr02926c.
5
Multilayer DNA Origami with Terminal Interfaces That Are Flat and Wide-Area.
ACS Nano. 2024 Jan 9;18(1):885-893. doi: 10.1021/acsnano.3c09522. Epub 2023 Dec 18.
6
Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures.
ACS Nano. 2021 Jun 22;15(6):9391-9403. doi: 10.1021/acsnano.0c10137. Epub 2021 Mar 16.
7
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.
Electrophoresis. 2015 Jan;36(2):255-62. doi: 10.1002/elps.201400323. Epub 2014 Oct 27.
8
Complex wireframe DNA nanostructures from simple building blocks.
Nat Commun. 2019 Mar 6;10(1):1067. doi: 10.1038/s41467-019-08647-7.
9
Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges.
ACS Nano. 2023 Apr 11;17(7):6565-6574. doi: 10.1021/acsnano.2c11982. Epub 2023 Mar 23.
10
Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes.
Methods Mol Biol. 2023;2639:83-90. doi: 10.1007/978-1-0716-3028-0_5.

引用本文的文献

1
Hybrid DNA Origami - Graphene Platform for Electrically-Gated Nanoscale Motion.
Adv Mater Interfaces. 2025 Apr 21;12(8). doi: 10.1002/admi.202400617. Epub 2024 Nov 6.
3
DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and Electron Cryotomography.
JACS Au. 2024 Dec 27;5(1):17-27. doi: 10.1021/jacsau.4c00986. eCollection 2025 Jan 27.
4
Precise control of transmembrane current via regulating bionic lipid membrane composition.
Sci Adv. 2024 Aug 30;10(35):eadq0118. doi: 10.1126/sciadv.adq0118.
5
Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination.
Nat Nanotechnol. 2024 Jul;19(7):1055-1065. doi: 10.1038/s41565-024-01615-3. Epub 2024 Mar 15.
6
Geometry guided crystallization of anisotropic DNA origami shapes.
Chem Sci. 2023 Oct 3;14(41):11507-11514. doi: 10.1039/d3sc02722h. eCollection 2023 Oct 25.
7
Mechanics of dynamic and deformable DNA nanostructures.
Chem Sci. 2023 Jul 6;14(30):8018-8046. doi: 10.1039/d3sc01793a. eCollection 2023 Aug 2.
8
Ion-induced changes in DNA gels.
Soft Matter. 2023 Jul 19;19(28):5405-5415. doi: 10.1039/d3sm00666b.
9
Design, Assembly, and Function of DNA Origami Mechanisms.
Methods Mol Biol. 2023;2639:21-49. doi: 10.1007/978-1-0716-3028-0_2.
10
Recent Advances in DNA Origami-Engineered Nanomaterials and Applications.
Chem Rev. 2023 Apr 12;123(7):3976-4050. doi: 10.1021/acs.chemrev.3c00028. Epub 2023 Mar 29.

本文引用的文献

1
DNA-templated protein arrays for single-molecule imaging.
Nano Lett. 2011 Feb 9;11(2):657-60. doi: 10.1021/nl1037769. Epub 2011 Jan 10.
2
Molecular robots guided by prescriptive landscapes.
Nature. 2010 May 13;465(7295):206-10. doi: 10.1038/nature09012.
3
DNA scissors device used to measure MutS binding to DNA mis-pairs.
J Am Chem Soc. 2010 Mar 31;132(12):4352-7. doi: 10.1021/ja910188p.
5
Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
Nat Nanotechnol. 2010 Jan;5(1):61-6. doi: 10.1038/nnano.2009.311. Epub 2009 Nov 8.
6
Multilayer DNA origami packed on a square lattice.
J Am Chem Soc. 2009 Nov 4;131(43):15903-8. doi: 10.1021/ja906381y.
7
Prototyping nanorod control: A DNA double helix sheathed within a DNA six-helix bundle.
Chem Biol. 2009 Aug 28;16(8):862-7. doi: 10.1016/j.chembiol.2009.07.008.
8
Folding DNA into twisted and curved nanoscale shapes.
Science. 2009 Aug 7;325(5941):725-30. doi: 10.1126/science.1174251.
9
Design and construction of a box-shaped 3D-DNA origami.
Chem Commun (Camb). 2009 Jul 28(28):4182-4. doi: 10.1039/b907800b. Epub 2009 Jun 17.
10
Rapid prototyping of 3D DNA-origami shapes with caDNAno.
Nucleic Acids Res. 2009 Aug;37(15):5001-6. doi: 10.1093/nar/gkp436. Epub 2009 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验