Department of Pediatrics and Pediatric Surgery, University of Padova, Padova, Italy.
Stem Cells. 2012 Aug;30(8):1675-84. doi: 10.1002/stem.1134.
Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn(F7/F7) mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein we demonstrate that tail vein transplantation of mouse amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. Second, after cardiotoxin injury of the Tibialis Anterior, only AFS-transplanted mice efficiently regenerate. Most importantly, secondary transplants of satellite cells (SCs) derived from treated mice show that AFS cells integrate into the muscle stem cell compartment and have long-term muscle regeneration capacity indistinguishable from that of wild-type-derived SC. This is the first study demonstrating the functional and stable integration of AFS cells into the skeletal muscle, highlighting their value as cell source for the treatment of muscular dystrophies.
运动神经元生存基因 (SMN1) 的突变是导致脊髓性肌萎缩症的原因,这是一种致命的神经肌肉疾病。携带靶向骨骼肌的 Smn 外显子 7 纯合缺失的小鼠 (HSA-Cre, Smn(F7/F7) 小鼠) 表现出人类肌肉营养不良的临床特征,这需要新的治疗方法。本文中,我们证明了经尾静脉移植小鼠羊膜干细胞 (AFS) 可增强肌肉力量并提高受影响动物的存活率。其次,在比目鱼肌肌毒性损伤后,只有 AFS 移植的小鼠能有效再生。最重要的是,来源于治疗小鼠的卫星细胞 (SCs) 的二次移植表明,AFS 细胞整合到肌肉干细胞区室中,具有与野生型来源的 SC 相当的长期肌肉再生能力。这是第一项证明 AFS 细胞功能性和稳定整合到骨骼肌中的研究,突出了它们作为肌肉营养不良治疗细胞来源的价值。