Suppr超能文献

在基底上的刷型大分子中,共价键的反阿伦尼乌斯断裂。

Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.

机构信息

Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599-3290, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9276-80. doi: 10.1073/pnas.1118517109. Epub 2012 May 29.

Abstract

Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.

摘要

通过原子力显微镜监测了在水基衬底上的刷状大分子的自发降解。由于吸附侧链之间的空间排斥,刷状大分子的骨架中的 C ─ C 共价键发生了断裂,从而在几个纳牛顿的量级上产生了键张力。与传统的化学反应不同,键的断裂速率随温度的升高而降低。这种明显的反阿仑尼乌斯行为是由于加热时基底的表面能降低,导致吸附大分子中的键张力相应降低。尽管张力从 2.16 降至 1.89 nN 的降幅很小,但足以克服阿仑尼乌斯方程中热能(k(B)T)的增加。通过测量键断裂反应的速率常数作为温度和表面能的函数,我们确定了由受扰莫尔斯势 V = V(0)(1 - e(-βx))(2) - fx 拟合的实验数据,其中 V(0) = 141 ± 19 kJ/mol,β(-1) = 0.18 ± 0.03 Å。虽然 V(0) 值与有机聚合物的机械和热降解的活化能 E(a) = 80-220 kJ/mol 相当,但明显低于 C ─ C 键的离解能 D(e) = 350 kJ/mol。此外,沿其骨架拉伸的瓶刷的力常数 K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m 明显大于 C ─ C 键的力常数 K(l) = 0.44 kN/m,这归因于侧链变形引起的额外刚度。

相似文献

7
"Fatal adsorption" of brushlike macromolecules: high sensitivity of C-C bond cleavage rates to substrate surface energy.
J Am Chem Soc. 2008 Apr 2;130(13):4228-9. doi: 10.1021/ja7111806. Epub 2008 Mar 8.
9
Adsorption-induced scission of carbon-carbon bonds.吸附诱导的碳-碳键断裂。
Nature. 2006 Mar 9;440(7081):191-4. doi: 10.1038/nature04576.
10
Surfactant solutions and porous substrates: spreading and imbibition.表面活性剂溶液与多孔基质:铺展与吸液
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.

引用本文的文献

3
Shaping centromeres to resist mitotic spindle forces.塑造着丝纺锤体的力来抵抗着着丝粒。
J Cell Sci. 2022 Feb 15;135(4). doi: 10.1242/jcs.259532. Epub 2022 Feb 18.
5
Main-chain scission of individual macromolecules induced by solvent swelling.溶剂溶胀引起的单个大分子的主链断裂。
Chem Sci. 2019 May 8;10(24):6125-6139. doi: 10.1039/c9sc01639b. eCollection 2019 Jun 28.

本文引用的文献

6
A molecular force probe.
Nat Nanotechnol. 2009 May;4(5):302-6. doi: 10.1038/nnano.2009.55. Epub 2009 Mar 29.
7
Mechanistic role of movement and strain sensitivity in muscle contraction.运动和应变敏感性在肌肉收缩中的机制作用。
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6140-5. doi: 10.1073/pnas.0812487106. Epub 2009 Mar 26.
8
Theory, analysis, and interpretation of single-molecule force spectroscopy experiments.单分子力谱实验的理论、分析与解释
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15755-60. doi: 10.1073/pnas.0806085105. Epub 2008 Oct 13.
10
"Fatal adsorption" of brushlike macromolecules: high sensitivity of C-C bond cleavage rates to substrate surface energy.
J Am Chem Soc. 2008 Apr 2;130(13):4228-9. doi: 10.1021/ja7111806. Epub 2008 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验