Suppr超能文献

高氧诱导的支气管肺发育不良小鼠模型中的 microRNA-mRNA 相互作用。

MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia.

机构信息

Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA.

出版信息

BMC Genomics. 2012 May 30;13:204. doi: 10.1186/1471-2164-13-204.

Abstract

BACKGROUND

Bronchopulmonary dysplasia is a chronic lung disease of premature neonates characterized by arrested pulmonary alveolar development. There is increasing evidence that microRNAs (miRNAs) regulate translation of messenger RNAs (mRNAs) during lung organogenesis. The potential role of miRNAs in the pathogenesis of BPD is unclear.

RESULTS

Following exposure of neonatal mice to 80% O2 or room air (RA) for either 14 or 29 days, lungs of hyperoxic mice displayed histological changes consistent with BPD. Comprehensive miRNA and mRNA profiling was performed using lung tissue from both O2 and RA treated mice, identifying a number of dynamically regulated miRNAs and associated mRNA target genes. Gene ontology enrichment and pathway analysis revealed that hyperoxia modulated genes involved in a variety of lung developmental processes, including cell cycle, cell adhesion, mobility and taxis, inflammation, and angiogenesis. MiR-29 was prominently increased in the lungs of hyperoxic mice, and several predicted mRNA targets of miR-29 were validated with real-time PCR, western blotting and immunohistochemistry. Direct miR-29 targets were further validated in vitro using bronchoalveolar stem cells.

CONCLUSION

In newborn mice, prolonged hyperoxia induces an arrest of alveolar development similar to that seen in human neonates with BPD. This abnormal lung development is accompanied by significant increases in the levels of multiple miRNAs and corresponding decreases in the levels of predicted mRNA targets, many of which have known or suspected roles in pathways altered in BPD. These data support the hypothesis that dynamic regulation of miRNAs plays a prominent role in the pathophysiology of BPD.

摘要

背景

支气管肺发育不良是一种早产儿的慢性肺部疾病,其特征是肺肺泡发育停滞。越来越多的证据表明 microRNAs(miRNAs)在肺器官发生过程中调节信使 RNA(mRNA)的翻译。miRNAs 在 BPD 发病机制中的潜在作用尚不清楚。

结果

在对新生小鼠暴露于 80% O2 或常氧(RA) 14 或 29 天后,高氧组小鼠的肺部显示出与 BPD 一致的组织学变化。使用来自 O2 和 RA 处理的小鼠的肺组织进行了全面的 miRNA 和 mRNA 谱分析,确定了许多动态调节的 miRNA 和相关的 mRNA 靶基因。基因本体富集和途径分析表明,高氧调节了与多种肺发育过程相关的基因,包括细胞周期、细胞黏附、运动和趋化性、炎症和血管生成。miR-29 在高氧组小鼠的肺部中明显增加,并且通过实时 PCR、western blot 和免疫组织化学验证了 miR-29 的几个预测 mRNA 靶标。使用支气管肺泡干细胞在体外进一步验证了直接的 miR-29 靶标。

结论

在新生小鼠中,长时间的高氧诱导肺泡发育停滞,类似于人类 BPD 新生儿的情况。这种异常的肺发育伴随着多种 miRNA 水平的显著增加和预测 mRNA 靶标的水平降低,其中许多在 BPD 改变的途径中具有已知或可疑的作用。这些数据支持 miRNA 的动态调节在 BPD 病理生理学中发挥重要作用的假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b74/3410783/b5e633cfd3d7/1471-2164-13-204-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验