Department of Chemistry, University of California, Berkeley, California 94720, USA.
ACS Nano. 2012 Jun 26;6(6):5702-9. doi: 10.1021/nn301885u. Epub 2012 Jun 5.
Drastic chemical interface plasmon damping is induced by the ultrathin (∼2 nm) titanium (Ti) adhesion layer; alternatively, molecular adhesion is implemented for lithographic fabrication of plasmonic nanostructures without significant distortion of the plasmonic characteristics. As determined from the homogeneous linewidth of the resonance scattering spectrum of individual gold nanorods, an ultrathin Ti layer reduces the plasmon dephasing time significantly, and it reduces the plasmon scattering amplitude drastically. The increased damping rate and decreased plasmon amplitude are due to the dissipative dielectric function of Ti and the chemical interface plasmon damping where the conduction electrons are transferred across the metal-metal interface. In addition, a pronounced red shift due to the Ti adhesion layer, more than predicted using electromagnetic simulation, suggests the prevalence of interfacial reactions. By extending the experiment to conductively coupled ring-rod nanostructures, it is shown that a sharp Fano-like resonance feature is smeared out due to the Ti layer. Alternatively, vapor deposition of (3-mercaptopropyl)trimethoxysilane on gently cleaned and activated lithographic patterns functionalizes the glass surface sufficiently to link the gold nanostructures to the surface by sulfur-gold chemical bonds without observable plasmon damping effects.
剧烈的化学界面等离子体阻尼是由超薄(∼2nm)钛(Ti)附着层引起的;或者,通过分子附着来实现等离子体纳米结构的光刻制造,而不会显著扭曲等离子体特性。从单个金纳米棒的共振散射光谱的均匀线宽来确定,超薄 Ti 层会显著降低等离子体退相时间,并会剧烈降低等离子体散射幅度。增加的阻尼速率和降低的等离子体幅度是由于 Ti 的耗散介电函数和化学界面等离子体阻尼,其中传导电子在金属-金属界面上转移。此外,由于 Ti 附着层引起的明显红移,超过了电磁模拟的预测,这表明界面反应的普遍存在。通过将实验扩展到导电耦合的环-棒纳米结构,表明由于 Ti 层,尖锐的类 Fano 共振特征变得模糊。或者,在温和清洁和活化的光刻图案上蒸镀(3-巯丙基)三甲氧基硅烷,足以将玻璃表面功能化,使金纳米结构通过硫-金化学键与表面相连,而不会观察到等离子体阻尼效应。