Foltýn Michael, Patočka Marek, Řepa Rostislav, Šikola Tomáš, Horák Michal
Faculty of Mechanical Engineering, Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic.
NenoVision, Purkyňova 127, 612 00 Brno, Czech Republic.
ACS Omega. 2024 Aug 21;9(35):37408-37416. doi: 10.1021/acsomega.4c06598. eCollection 2024 Sep 3.
The behavior of plasmonic antennas is influenced by a variety of factors, including their size, shape, and material. Even minor changes in the deposition parameters during the thin film preparation process may have a significant impact on the dielectric function of the film, and thus on the plasmonic properties of the resulting antenna. In this work, we deposited gold thin films with thicknesses of 20, 30, and 40 nm at various deposition rates using an ion-beam-assisted deposition. We evaluate their morphology and crystallography by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. Next, we examined the ease of fabricating plasmonic antennas using focused-ion-beam lithography. Finally, we evaluate their plasmonic properties by electron energy loss spectroscopy measurements of individual antennas. Our results show that the optimal gold thin film for plasmonic antenna fabrication of a thickness of 20 and 30 nm should be deposited at the deposition rate of around 0.1 nm/s. The thicker 40 nm film should be deposited at a higher deposition rate like 0.3 nm/s.
等离子体天线的行为受到多种因素的影响,包括其尺寸、形状和材料。即使在薄膜制备过程中沉积参数的微小变化也可能对薄膜的介电函数产生重大影响,从而对所得天线的等离子体特性产生重大影响。在这项工作中,我们使用离子束辅助沉积以各种沉积速率沉积了厚度为20、30和40nm的金薄膜。我们通过原子力显微镜、X射线衍射和透射电子显微镜评估它们的形态和晶体学。接下来,我们研究了使用聚焦离子束光刻制造等离子体天线的难易程度。最后,我们通过对单个天线的电子能量损失谱测量来评估它们的等离子体特性。我们的结果表明,用于制造等离子体天线的最佳金薄膜,厚度为20和30nm时,应以约0.1nm/s的沉积速率沉积。较厚的40nm薄膜应以更高的沉积速率如0.3nm/s沉积。