Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA.
Mol Pharmacol. 2012 Sep;82(3):383-99. doi: 10.1124/mol.112.078352. Epub 2012 May 30.
Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca(2+)-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [(3)H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca(2+) release in ventricular myocytes increased ~5-fold. Evoked Ca(2+) release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca(2+)-dependent ligand [(3)H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca(2+) responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca(2+) release and induced Ca(2+) waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca(2+) release from the SR, reduced carbonylation of RyR2s, and increased binding of [(3)H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes.
心力衰竭和心律失常在患有糖尿病的个体中的发生率比同龄、健康个体高 3 至 5 倍。研究将这些缺陷部分归因于心型 2 型兰尼碱受体 (RyR2s) 的功能改变,RyR2s 是内部肌浆网 (SR) 上的主要 Ca(2+)释放通道。迄今为止,糖尿病中 RyR2 调节异常的机制仍未得到很好的定义。使用 1 型糖尿病大鼠模型、超声心动图、体内和体外血液动力学研究、共聚焦显微镜、Western blot、质谱、定点突变、[(3)H]兰尼碱结合、脂质双层和转染测定,以确定反应性羰基物质 (RCS) 的翻译后修饰是否是一个促成因素。糖尿病 8 周后,心室肌细胞的自发 Ca(2+)释放增加了约 5 倍。从 SR 中诱发的 Ca(2+)释放不均匀 (不同步)。总 RyR2 蛋白水平保持不变,但与 Ca(2+)依赖性配体 [(3)H]兰尼碱的结合能力显著降低。Western blot 和质谱显示选择的碱性残基上存在 RCS 加合物。突变残基以描绘羰基化的物理化学影响产生了具有增强或降低细胞质 Ca(2+)反应性的通道。原型 RCS 甲基乙二醛增加然后降低 RyR2 开放概率。甲基乙二醛还增加了健康肌细胞的自发性 Ca(2+)释放和诱导 Ca(2+)波。用 RCS 清除剂治疗糖尿病大鼠可使 SR 中的自发性和诱发的 Ca(2+)释放正常化,减少 RyR2s 的羰基化,并增加 [(3)H]兰尼碱与 RyR2s 的结合。根据这些数据,我们得出结论,RCS 的翻译后修饰导致实验性糖尿病中 RyR2 活性的异质性。