Suppr超能文献

一种用于大分子结构直接相位确定的基于包络的方法。

An envelope-based approach for direct phase determination of macromolecular structures.

作者信息

Rees D C

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.

出版信息

Acta Crystallogr A. 1990 Nov 1;46 ( Pt 11):915-22. doi: 10.1107/s0108767390006705.

Abstract

An initial electron density distribution for a crystal structure may be directly derived from observed diffraction data by maximizing the product of the observed and calculated Patterson functions with respect to the electron density values within an envelope. This maximization problem may be formulated as an eigenvalue equation, in which potential electron density distributions are obtained as eigendensities (eigenvectors) of a symmetric matrix. Elements of this matrix depend only on the indices and intensities of the observed reflections, and on the coordinates of grid points inside the envelope. Eigendensities are calculated for a set of small envelopes (enclosing about 20% of the molecular volume) covering a unique region of the unit cell whose points are unrelated by space-group operations, origin shifts or changes in enantiomorph. On the basis of correlation coefficients between the observed and calculated values for both the Patterson function and structure-factor amplitudes, a small set of eigendensities are selected for combination into a final electron density distribution. This electron density distribution may be Fourier transformed to yield calculated structure factors. Test calculations on lysozyme indicate that phase errors of less than 60 degrees may be obtained for strong low-resolution reflections by this procedure. An extension of this approach to handle crystal structures containing non-crystallographic symmetry is described.

摘要

晶体结构的初始电子密度分布可通过使观测到的帕特森函数与计算得到的帕特森函数在一个包络内的电子密度值的乘积最大化,直接从观测到的衍射数据中推导得出。这个最大化问题可以被表述为一个特征值方程,其中潜在的电子密度分布作为一个对称矩阵的本征密度(特征向量)获得。该矩阵的元素仅取决于观测到的反射的指数和强度,以及包络内网格点的坐标。针对覆盖晶胞中一个唯一区域的一组小的包络(包围约20%的分子体积)计算本征密度,该区域的点在空间群操作、原点平移或对映体变化下是不相关的。基于帕特森函数和结构因子振幅的观测值与计算值之间的相关系数,选择一小组本征密度组合成最终的电子密度分布。这个电子密度分布可以进行傅里叶变换以产生计算得到的结构因子。对溶菌酶的测试计算表明,通过该程序对于强的低分辨率反射可以获得小于60度的相位误差。描述了这种方法的一种扩展,用于处理包含非晶体学对称性的晶体结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验