Cardioprotection Laboratory, Department of Kinesiology, Auburn University, Auburn, Alabama 36830, USA.
J Appl Physiol (1985). 2012 Aug;113(3):498-506. doi: 10.1152/japplphysiol.00957.2011. Epub 2012 May 31.
Exercise is a potent stimulus against cardiac ischemia reperfusion (IR) injury, although the protective mechanisms are not completely understood. The study purpose was to examine whether the mitochondrial or sarcolemmal ATP-sensitive potassium channel (mito K(ATP) or sarc K(ATP), respectively) mediates exercise-induced cardioprotection against post-IR cell death and apoptosis. Eighty-six, 4-mo-old male Sprague Dawley rats were randomly assigned to treadmill exercise (Ex; 30 m/min, 3 days, 60 min, ∼70 maximal oxygen uptake) and sedentary (Sed) treatments. Rats were exposed to regional cardiac ischemia (50 min) and reperfusion (120 min) or Sham (170 min; no ligation) surgeries. Exercise subgroups received placebo (saline), 5-hydroxydecanoate (5HD; 10 mg/kg ip), or HMR1098 (10 mg/kg ip) to inhibit mito K(ATP) or sarc K(ATP) channel. Comprehensive outcome assessments included post-IR ECG arrhythmias, cardiac tissue necrosis, redox perturbations, and autophagy biomarkers. No arrhythmia differences existed between exercised and sedentary hearts following extended-duration IR (P < 0.05). The sarc K(ATP) channel was confirmed essential (P = 0.002) for prevention of antinecrotic tissue death with exercise (percent infarct, Sed = 42%; Ex = 20%; Ex5HD = 16%; ExHMR = 42%), although neither the mito K(ATP) (P = 0.177) nor sarc K(ATP) (P = 0.274) channel provided post-IR protection against apoptosis (terminal deoxynucleotidyl transferase deoxy UTP-mediated nick-end labeling-positive nuclei/mm(2), Sham = 1.8 ± 0.5; Sed = 19.4 ± 6.7; Ex = 7.5 ± 4.6; Ex5HD = 14.0 ± 3.9; ExHMR = 11.1 ± 1.8). Exercise preconditioning also appears to preserve basal autophagy levels, as assessed by Beclin 1 (P ≤ 0.001), microtubule-associated protein-1 light-chain 3B ratios (P = 0.020), and P62 (P ≤ 0.001), in the hours immediately following IR. Further research is needed to better understand these findings and corresponding redox changes in exercised hearts.
运动是对抗心肌缺血再灌注(IR)损伤的有效刺激因素,尽管其保护机制尚不完全清楚。本研究旨在探讨线粒体或肌浆网 ATP 敏感性钾通道(mito K(ATP)或 sarc K(ATP))是否介导运动诱导的心肌对再灌注后细胞死亡和凋亡的保护作用。86 只 4 月龄雄性 Sprague Dawley 大鼠随机分为跑步机运动(Ex;30 m/min,3 天,60 min,约 70 最大耗氧量)和安静(Sed)处理组。大鼠接受局部心肌缺血(50 min)和再灌注(120 min)或假手术(Sham;170 min;无结扎)。运动亚组给予安慰剂(生理盐水)、5-羟基癸酸(5HD;10 mg/kg ip)或 HMR1098(10 mg/kg ip)以抑制 mito K(ATP)或 sarc K(ATP)通道。综合结局评估包括再灌注后 ECG 心律失常、心肌组织坏死、氧化还原紊乱和自噬生物标志物。延长再灌注时间后,运动和安静心脏之间没有心律失常差异(P < 0.05)。肌浆网 K(ATP)通道对运动预防抗坏死性组织死亡至关重要(P = 0.002;梗死百分比,Sed = 42%;Ex = 20%;Ex5HD = 16%;ExHMR = 42%),尽管线粒体 K(ATP)(P = 0.177)或肌浆网 K(ATP)(P = 0.274)通道均不能防止再灌注后细胞凋亡(末端脱氧核苷酸转移酶介导的脱氧尿嘧啶三磷酸切口末端标记阳性核/平方毫米,Sham = 1.8 ± 0.5;Sed = 19.4 ± 6.7;Ex = 7.5 ± 4.6;Ex5HD = 14.0 ± 3.9;ExHMR = 11.1 ± 1.8)。运动预处理似乎还能在再灌注后数小时内通过 Beclin 1(P ≤ 0.001)、微管相关蛋白 1 轻链 3B 比值(P = 0.020)和 P62(P ≤ 0.001)来维持基础自噬水平。需要进一步研究以更好地了解这些发现以及运动心脏中的相应氧化还原变化。