Suppr超能文献

识别老年医疗保险患者再次入院的风险:一种使用常规收集数据的方法。

Identifying risk of hospital readmission among Medicare aged patients: an approach using routinely collected data.

作者信息

Navarro Adria E, Enguídanos Susan, Wilber Kathleen H

机构信息

Azusa Pacific University, Department of Graduate Social Work, School of Behavioral and Applied Sciences, Azusa, California 91702-7000, USA.

出版信息

Home Health Care Serv Q. 2012;31(2):181-95. doi: 10.1080/01621424.2012.681561.

Abstract

Readmission provisions in the Patient Protection and Affordable Care Act of March 2010 have created urgent fiscal accountability requirements for hospitals, dependent upon a better understanding of their specific populations, along with development of mechanisms to easily identify these at-risk patients. Readmissions are disruptive and costly to both patients and the health care system. Effectively addressing hospital readmissions among Medicare aged patients offers promising targets for resources aimed at improved quality of care for older patients. Routinely collected data, accessible via electronic medical records, were examined using logistic models of sociodemographic, clinical, and utilization factors to identify predictors among patients who required rehospitalization within 30 days. Specific comorbidities and discharge care orders in this urban, nonprofit hospital had significantly greater odds of predicting a Medicare aged patient's risk of readmission within 30 days.

摘要

2010年3月的《患者保护与平价医疗法案》中的再入院条款,给医院带来了紧迫的财务问责要求,这取决于对医院特定人群的更好了解,以及开发能轻松识别这些高危患者的机制。再入院对患者和医疗系统都会造成干扰且成本高昂。有效解决老年医疗保险患者的医院再入院问题,为旨在提高老年患者护理质量的资源提供了有前景的目标。通过电子病历可获取的常规收集数据,使用社会人口统计学、临床和利用因素的逻辑模型进行了检查,以确定在30天内需要再次住院的患者中的预测因素。在这家城市非营利性医院中,特定的合并症和出院护理医嘱,在预测老年医疗保险患者30天内再入院风险方面的几率显著更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验