Suppr超能文献

青蒿素衍生物的定量构效关系、对接和药物代谢动力学研究,针对疟原虫血红蛋白降解酶 Plasmepsin II 的抗疟活性。

QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum.

机构信息

Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, India.

出版信息

Curr Pharm Des. 2012;18(37):6133-54. doi: 10.2174/138161212803582397.

Abstract

This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.

摘要

这项工作提出了一种定量构效关系(QSAR)模型,用于预测青蒿素衍生物的抗疟活性。分子的结构由化学描述符表示,这些描述符编码拓扑、几何和电子结构特征。通过 QSAR 模型筛选表明,化合物 A24、A24a、A53、A54、A62 和 A64 具有显著的抗疟活性。线性模型是通过多元线性回归方法建立的,将结构与其报道的抗疟活性联系起来。回归系数(r(2))方面的相关性为 0.90,模型的预测准确性(交叉验证回归系数 rCV(2))为 0.82。这项研究表明,化学性质,如原子数(所有原子)、连接性指数(阶 1,标准)、环数(所有环)、形状指数(基本kappa,阶 2)和溶剂可及表面积与抗疟活性密切相关。对接研究表明,预测的活性化合物对疟原虫 Plasmepsins(Plm-II)具有高结合亲和力。进一步的口服生物利用度、ADMET 和毒性风险评估研究表明,化合物 A24、A24a、A53、A54、A62 和 A64 表现出与标准抗疟药物相当的显著抗疟活性。后来,预测的活性化合物之一 A64 被化学合成,通过 NMR 结构解析,并在感染恶性疟原虫尼日利亚株的多药耐药性感染小鼠体内进行了体内试验。实验结果与预测值吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验