Suppr超能文献

基于 MicroRNA 的多发性骨髓瘤治疗的前景与挑战。

Promises and challenges of MicroRNA-based treatment of multiple myeloma.

机构信息

Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University and T. Campanella Cancer Center, Salvatore Venuta Campus, Catanzaro, Italy.

出版信息

Curr Cancer Drug Targets. 2012 Sep;12(7):838-46. doi: 10.2174/156800912802429355.

Abstract

MicroRNAs (miRNAs) recently emerged with a key role in multiple myeloma (MM) pathophysiology and are considered important regulators of MM cell growth and survival. Since miRNAs can act either as oncogenes or tumour suppressors, the potential of targeting the miRNA network arises as a novel therapeutic approach for human cancer. Potential strategies based on miRNA therapeutics basically rely on miRNA inhibition or miRNA replacement approaches and take benefit respectively from the use of antagomirs or synthetic miRNAs as well as from lipid-based nanoparticles which allow an efficient miRNA-delivery. The availability of experimental in vivo platforms which recapitulate the growth of MM cells within the specific human bone marrow microenvironment in immunocompromised mice (SCID-hu and SCID-synth-hu) provides powerful systems for development of miRNA-based therapeutics in MM. Preliminary findings on the anti-MM activity of synthetic miRNAs in such experimental models offer a proof-of-principle that miRNA therapeutics is a promising opportunity for this still incurable disease representing the rationale for a new venue of investigation in this specific field.

摘要

微小 RNA(miRNAs)在多发性骨髓瘤(MM)发病机制中具有关键作用,被认为是 MM 细胞生长和存活的重要调节剂。由于 miRNAs 可以作为癌基因或肿瘤抑制因子发挥作用,因此靶向 miRNA 网络作为一种新的癌症治疗方法具有潜力。基于 miRNA 治疗的潜在策略主要依赖于 miRNA 抑制或 miRNA 替代方法,分别受益于使用反义寡核苷酸或合成 miRNA 以及基于脂质的纳米颗粒,这些方法允许有效的 miRNA 递送来实现。在免疫功能低下的小鼠(SCID-hu 和 SCID-synth-hu)中重现 MM 细胞生长的实验体内平台的可用性,为 MM 中基于 miRNA 的治疗方法的发展提供了强大的系统。在这些实验模型中,关于合成 miRNA 对 MM 的抗 MM 活性的初步发现提供了一个原理证明,即 miRNA 治疗是一种有前途的机会,可用于这种仍然无法治愈的疾病,这代表了该特定领域新的研究途径的理由。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa9/3504921/3b3935f58a3f/CCDT-12-838_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验