Suppr超能文献

电流和 I/II 型转变决定了共同输入的集体发放。

A-current and type I/type II transition determine collective spiking from common input.

机构信息

Dept. of Applied Mathematics and Program in Neurobiology and Behavior, Univ. of Washington, Box 352420, Seattle, WA 98195, USA.

出版信息

J Neurophysiol. 2012 Sep;108(6):1631-45. doi: 10.1152/jn.00928.2011. Epub 2012 Jun 6.

Abstract

The mechanisms and impact of correlated, or synchronous, firing among pairs and groups of neurons are under intense investigation throughout the nervous system. A ubiquitous circuit feature that can give rise to such correlations consists of overlapping, or common, inputs to pairs and populations of cells, leading to common spike train responses. Here, we use computational tools to study how the transfer of common input currents into common spike outputs is modulated by the physiology of the recipient cells. We focus on a key conductance, g(A), for the A-type potassium current, which drives neurons between "type II" excitability (low g(A)), and "type I" excitability (high g(A)). Regardless of g(A), cells transform common input fluctuations into a tendency to spike nearly simultaneously. However, this process is more pronounced at low g(A) values. Thus, for a given level of common input, type II neurons produce spikes that are relatively more correlated over short time scales. Over long time scales, the trend reverses, with type II neurons producing relatively less correlated spike trains. This is because these cells' increased tendency for simultaneous spiking is balanced by an anticorrelation of spikes at larger time lags. These findings extend and interpret prior findings for phase oscillators to conductance-based neuron models that cover both oscillatory (superthreshold) and subthreshold firing regimes. We demonstrate a novel implication for neural signal processing: downstream cells with long time constants are selectively driven by type I cell populations upstream and those with short time constants by type II cell populations. Our results are established via high-throughput numerical simulations and explained via the cells' filtering properties and nonlinear dynamics.

摘要

在整个神经系统中,人们正在深入研究神经元对之间或神经元群体之间相关(或同步)放电的机制和影响。一种普遍存在的电路特征可以产生这种相关性,它由对神经元对和细胞群体的重叠或共同输入组成,导致共同的尖峰序列反应。在这里,我们使用计算工具来研究共同输入电流如何转移到共同的尖峰输出,这是由接收细胞的生理学调节的。我们专注于 A 型钾电流的一个关键电导 g(A),它使神经元在“II 型”兴奋性(低 g(A))和“I 型”兴奋性(高 g(A))之间转换。无论 g(A)如何,细胞都会将共同的输入波动转化为几乎同时放电的趋势。然而,这个过程在低 g(A)值下更为明显。因此,对于给定的共同输入水平,II 型神经元产生的尖峰在短时间尺度上具有更高的相关性。在长时间尺度上,趋势相反,II 型神经元产生相对不相关的尖峰序列。这是因为这些细胞同时放电的趋势增加被较大时间滞后的尖峰反相关所平衡。这些发现扩展并解释了相位振荡器的先前发现,为覆盖超阈值和亚阈值放电范围的基于电导的神经元模型提供了依据。我们展示了神经信号处理的一个新含义:具有长时间常数的下游细胞被 I 型细胞群体上游选择性驱动,而具有短时间常数的下游细胞被 II 型细胞群体驱动。我们的结果是通过高通量数值模拟建立的,并通过细胞的滤波特性和非线性动力学来解释。

相似文献

3
Time scales of spike-train correlation for neural oscillators with common drive.具有共同驱动的神经振荡器的脉冲序列相关性的时间尺度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011916. doi: 10.1103/PhysRevE.81.011916. Epub 2010 Jan 27.
4
Spike and burst coding in thalamocortical relay cells.丘脑皮层中继细胞的尖峰和爆发编码。
PLoS Comput Biol. 2018 Feb 12;14(2):e1005960. doi: 10.1371/journal.pcbi.1005960. eCollection 2018 Feb.
10
Correlated neural variability in persistent state networks.持续状态网络中的相关神经变异性。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6295-300. doi: 10.1073/pnas.1121274109. Epub 2012 Apr 2.

引用本文的文献

2
Spike-frequency adaptation inhibits the pairwise spike correlation.峰频率适应性抑制成对峰相关性。
Front Neurosci. 2023 Jun 12;17:1193930. doi: 10.3389/fnins.2023.1193930. eCollection 2023.
4
Odor-evoked increases in olfactory bulb mitral cell spiking variability.气味诱发嗅球二尖瓣细胞放电变异性增加。
iScience. 2021 Aug 4;24(9):102946. doi: 10.1016/j.isci.2021.102946. eCollection 2021 Sep 24.
8
Ion channel degeneracy enables robust and tunable neuronal firing rates.离子通道简并性可实现稳健且可调节的神经元放电频率。
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5361-70. doi: 10.1073/pnas.1516400112. Epub 2015 Sep 9.
10
Intrinsic neuronal properties switch the mode of information transmission in networks.内在神经元特性会切换网络中的信息传递模式。
PLoS Comput Biol. 2014 Dec 4;10(12):e1003962. doi: 10.1371/journal.pcbi.1003962. eCollection 2014 Dec.

本文引用的文献

1
Correlation transfer in stochastically driven neural oscillators over long and short time scales.随机驱动神经振荡器在长时间和短时间尺度上的相关性传递
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061914. doi: 10.1103/PhysRevE.84.061914. Epub 2011 Dec 20.
3
Mechanisms that modulate the transfer of spiking correlations.调节尖峰相关传递的机制。
Neural Comput. 2011 May;23(5):1261-305. doi: 10.1162/NECO_a_00116. Epub 2011 Feb 7.
4
From spiking neuron models to linear-nonlinear models.从尖峰神经元模型到线性-非线性模型。
PLoS Comput Biol. 2011 Jan 20;7(1):e1001056. doi: 10.1371/journal.pcbi.1001056.
5
Pooling and correlated neural activity.池化和相关的神经活动。
Front Comput Neurosci. 2010 Apr 19;4:9. doi: 10.3389/fncom.2010.00009. eCollection 2010.
6
Correlations and synchrony in threshold neuron models.阈神经元模型中的相关性和同步性。
Phys Rev Lett. 2010 Feb 5;104(5):058102. doi: 10.1103/PhysRevLett.104.058102. Epub 2010 Feb 4.
7
Time scales of spike-train correlation for neural oscillators with common drive.具有共同驱动的神经振荡器的脉冲序列相关性的时间尺度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011916. doi: 10.1103/PhysRevE.81.011916. Epub 2010 Jan 27.
8
The asynchronous state in cortical circuits.皮质电路中的异步状态。
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验