Suppr超能文献

酿酒酵母中必需 DNA 复制蛋白耗尽引起的基因组重排。

Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

出版信息

Genetics. 2012 Sep;192(1):147-60. doi: 10.1534/genetics.112.141051. Epub 2012 Jun 5.

Abstract

Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.

摘要

酵母约 4500 个缺失突变体的遗传筛选已经鉴定出促进基因组完整性维持的非必需基因群。在这里,我们探讨了维持基因组稳定性所必需的基因的作用。为此,我们筛选了 217 个四环素调控的必需基因启动子等位基因,发现了 47 个基因缺失会导致自发 DNA 损伤。我们进一步表明,这 217 个必需基因中的 92 个在抑制染色体重排方面发挥作用。我们确定了一个核心的 15 个与 DNA 复制有关的基因,这些基因在防止自发 DNA 损伤和基因组重排方面至关重要。重排断点的定位、分类和分析表明,当抑制染色体重排的必需复制基因下调时,酵母脆性位点、Ty 反转录转座子、tRNA 基因、早期复制起点和复制终止位点是断点的常见特征。我们提出了这样一种机制,即必需复制蛋白的缺失会导致这些特征附近双链 DNA 断裂,随后通过同源重组在重复元件处修复。

相似文献

1
Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae.
Genetics. 2012 Sep;192(1):147-60. doi: 10.1534/genetics.112.141051. Epub 2012 Jun 5.
3
Migrating bubble during break-induced replication drives conservative DNA synthesis.
Nature. 2013 Oct 17;502(7471):389-92. doi: 10.1038/nature12584. Epub 2013 Sep 11.
4
The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
Genetics. 2006 Dec;174(4):1709-27. doi: 10.1534/genetics.106.057836. Epub 2006 Jun 4.
7
Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1010-20. doi: 10.1016/j.dnarep.2006.05.027. Epub 2006 Jun 23.
9
CENP-B preserves genome integrity at replication forks paused by retrotransposon LTR.
Nature. 2011 Jan 6;469(7328):112-5. doi: 10.1038/nature09608. Epub 2010 Dec 12.
10
Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance.
PLoS Genet. 2011 Jun;7(6):e1002136. doi: 10.1371/journal.pgen.1002136. Epub 2011 Jun 16.

引用本文的文献

1
Loss of G1-phase CDK-inhibition biases instability between genomic regions by unevenly reducing activity among replication origins.
iScience. 2025 May 28;28(6):112757. doi: 10.1016/j.isci.2025.112757. eCollection 2025 Jun 20.
2
The Shu complex interacts with the replicative helicase to prevent mutations and aberrant recombination.
EMBO J. 2025 Mar;44(5):1512-1539. doi: 10.1038/s44318-025-00365-9. Epub 2025 Jan 21.
3
The Mutagen-Sensitivity Gene Encodes .
Genes (Basel). 2022 Feb 7;13(2):312. doi: 10.3390/genes13020312.
4
DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond.
Genes (Basel). 2021 Nov 25;12(12):1882. doi: 10.3390/genes12121882.
5
VID22 counteracts G-quadruplex-induced genome instability.
Nucleic Acids Res. 2021 Dec 16;49(22):12785-12804. doi: 10.1093/nar/gkab1156.
6
Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods.
PLoS One. 2021 Jun 18;16(6):e0253136. doi: 10.1371/journal.pone.0253136. eCollection 2021.
7
in Chromosome Stability and Cell Survival-Is It All about Replication Forks?
Int J Mol Sci. 2021 Apr 13;22(8):3984. doi: 10.3390/ijms22083984.
8
Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites.
Nat Commun. 2021 Apr 8;12(1):2111. doi: 10.1038/s41467-021-22217-w.
9
Retrotransposon targeting to RNA polymerase III-transcribed genes.
Mob DNA. 2018 Apr 23;9:14. doi: 10.1186/s13100-018-0119-2. eCollection 2018.
10

本文引用的文献

1
R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants.
Genes Dev. 2012 Jan 15;26(2):163-75. doi: 10.1101/gad.179721.111.
3
Systematic exploration of essential yeast gene function with temperature-sensitive mutants.
Nat Biotechnol. 2011 Apr;29(4):361-7. doi: 10.1038/nbt.1832. Epub 2011 Mar 27.
4
Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.
Nature. 2011 Feb 3;470(7332):120-3. doi: 10.1038/nature09745. Epub 2011 Jan 23.
5
Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination.
PLoS Genet. 2010 Dec 2;6(12):e1001228. doi: 10.1371/journal.pgen.1001228.
7
A three-dimensional model of the yeast genome.
Nature. 2010 May 20;465(7296):363-7. doi: 10.1038/nature08973. Epub 2010 May 2.
8
Fragile genomic sites are associated with origins of replication.
Genome Biol Evol. 2009 Sep 9;1:350-63. doi: 10.1093/gbe/evp034.
9
Maintaining genome stability at the replication fork.
Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19. doi: 10.1038/nrm2852.
10
Claspin inhibition leads to fragile site expression.
Genes Chromosomes Cancer. 2009 Dec;48(12):1083-90. doi: 10.1002/gcc.20710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验