Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany.
Nat Commun. 2012 Jun 6;3:874. doi: 10.1038/ncomms1883.
High-intensity laser plasma-based ion accelerators provide unsurpassed field gradients in the megavolt-per-micrometer range. They represent promising candidates for next-generation applications such as ion beam cancer therapy in compact facilities. The weak scaling of maximum ion energies with the square-root of the laser intensity, established for large sub-picosecond class laser systems, motivates the search for more efficient acceleration processes. Here we demonstrate that for ultrashort (pulse duration ~30 fs) highly relativistic (intensity ~10(21) W cm(-2)) laser pulses, the intra-pulse phase of the proton acceleration process becomes relevant, yielding maximum energies of around 20 MeV. Prominent non-target-normal emission of energetic protons, reflecting an engineered asymmetry in the field distribution of promptly accelerated electrons, is used to identify this pre-thermal phase of the acceleration. The relevant timescale reveals the underlying physics leading to the near-linear intensity scaling observed for 100 TW class table-top laser systems.
基于高强度激光等离子体的离子加速器在兆伏特每微米范围内提供了无与伦比的场梯度。它们是下一代应用的有前途的候选者,例如在紧凑设施中进行离子束癌症治疗。在大型亚皮秒级激光系统中确立的最大离子能量与激光强度平方根的弱缩放,促使人们寻找更有效的加速过程。在这里,我们证明对于超短(脉冲持续时间约 30 fs)高相对论(强度约 10^(21)W cm^(-2))激光脉冲,质子加速过程中的脉冲内相位变得相关,产生约 20 MeV 的最大能量。高能质子的突出非靶法线发射,反映了迅速加速电子的场分布中的工程不对称性,用于识别这种加速的预热阶段。相关时间尺度揭示了导致在 100 TW 级台式激光系统中观察到的近线性强度缩放的基础物理。