Helmholtz-Zentrum Dresden-Rossendorf e.V., Germany.
Phys Rev Lett. 2011 Nov 11;107(20):205003. doi: 10.1103/PhysRevLett.107.205003. Epub 2011 Nov 10.
A precise knowledge of the temperature and number of hot electrons generated in the interaction of short-pulse high-intensity lasers with solids is crucial for harnessing the energy of a laser pulse in applications such as laser-driven ion acceleration or fast ignition. Nevertheless, present scaling laws tend to overestimate the hot electron temperature when compared to experiment and simulations. We present a novel approach that is based on a weighted average of the kinetic energy of an ensemble of electrons. We find that the scaling of electron energy with laser intensity can be derived from a general Lorentz invariant electron distribution ansatz that does not rely on a specific model of energy absorption. The scaling derived is in perfect agreement with simulation results and clearly follows the trend seen in recent experiments, especially at high laser intensities where other scalings fail to describe the simulations accurately.
精确了解短脉冲高强度激光与固体相互作用中产生的热电子的温度和数量,对于在激光驱动离子加速或快速点火等应用中利用激光脉冲的能量至关重要。然而,与实验和模拟相比,目前的标度定律往往会高估热电子温度。我们提出了一种新的方法,该方法基于电子集合的动能的加权平均值。我们发现,电子能量与激光强度的标度可以从一个不依赖于能量吸收特定模型的一般洛伦兹不变电子分布假设中推导出来。推导出的标度与模拟结果完全一致,并清楚地遵循了最近实验中观察到的趋势,尤其是在其他标度无法准确描述模拟的高激光强度下。