ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, H-6720 Szeged, Hungary.
Sci Rep. 2019 Sep 25;9(1):13840. doi: 10.1038/s41598-019-50348-0.
Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses with near-critical-density partially ionized plasmas (C & H species), we numerically observed high energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to proton conversion efficiency ~10 and angular divergence <10 degree), which can be of high relevance for medical applications. We envisage that through this scheme, the range of attained energies and the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse disruptions.
近年来,激光驱动离子加速器的发展引起了人们对这种高能粒子源的极大兴趣,特别是在其广泛应用方面的可行性,如高能物理和医学应用。在这里,我们确定了一种新的离子加速机制,并通过粒子模拟首次证明,在双气体靶中,混合离子种类,当加速质子束并见证加速质子束的自调制时,可以产生高能、单色质子微束。在由于超短、超强(2 PW、20 fs)激光脉冲与近临界密度部分电离等离子体(C 和 H 物质)的相互作用而产生的所提出的离子加速机制中,我们数值观察到了高质量的高能单色质子微束(峰值质子能量 350 MeV、激光到质子的转换效率约为 10%,角发散度 <10 度),这对于医学应用可能具有重要意义。我们设想,通过这种方案,现有的激光设备可以增加所获得的能量范围和加速质子的单色性,或者允许在较小规模的激光实验室中以中等能量进行激光驱动离子加速研究,从而减小加速器的尺寸。混合气体靶的使用将使这些加速器能够实现高重复率运行,而不会产生等离子体碎片和电磁脉冲干扰。