Suppr超能文献

酵母 DNA 聚合酶ɛ插入 DNA 中的核糖核苷酸的校正。

Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ɛ.

机构信息

Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.

出版信息

DNA Repair (Amst). 2012 Aug 1;11(8):649-56. doi: 10.1016/j.dnarep.2012.05.004. Epub 2012 Jun 8.

Abstract

We have investigated the ability of the 3' exonuclease activity of Saccharomyces cerevisiae DNA polymerase ɛ (Pol ɛ) to proofread newly inserted ribonucleotides (rNMPs). During DNA synthesis in vitro, Pol ɛ proofreads ribonucleotides with apparent efficiencies that vary from none at some locations to more than 90% at others, with rA and rU being more efficiently proofread than rC and rG. Previous studies show that failure to repair ribonucleotides in the genome of rnh201Δ strains that lack RNase H2 activity elevates the rate of short deletions in tandem repeat sequences. Here we show that this rate is increased by 2-4-fold in pol2-4 rnh201Δ strains that are also defective in Pol ɛ proofreading. In comparison, defective proofreading in these same strains increases the rate of base substitutions by more than 100-fold. Collectively, the results indicate that although proofreading of an 'incorrect' sugar is less efficient than is proofreading of an incorrect base, Pol ɛ does proofread newly inserted rNMPs to enhance genome stability.

摘要

我们研究了酿酒酵母 DNA 聚合酶ɛ(Pol ɛ)3'外切核酸酶活性校对新插入的核糖核苷酸(rNMP)的能力。在体外 DNA 合成过程中,Pol ɛ校对核糖核苷酸的效率各不相同,有些位置完全没有校对,而有些位置则超过 90%,其中 rA 和 rU 的校对效率高于 rC 和 rG。先前的研究表明,缺乏 RNase H2 活性的 rnh201Δ菌株中,基因组中核糖核苷酸修复失败会增加串联重复序列中短缺失的速率。在这里,我们表明在 Pol ɛ校对缺陷的 pol2-4 rnh201Δ菌株中,这种速率增加了 2-4 倍。相比之下,在这些相同的菌株中,碱基替换的缺陷校对导致速率增加了 100 多倍。总的来说,这些结果表明,尽管校对“错误”糖的效率低于校对错误碱基的效率,但 Pol ɛ确实可以校对新插入的 rNMP,以提高基因组稳定性。

相似文献

1
Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ɛ.
DNA Repair (Amst). 2012 Aug 1;11(8):649-56. doi: 10.1016/j.dnarep.2012.05.004. Epub 2012 Jun 8.
2
Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε.
DNA Repair (Amst). 2011 May 5;10(5):476-82. doi: 10.1016/j.dnarep.2011.02.001. Epub 2011 Mar 16.
4
Stimulation of Chromosomal Rearrangements by Ribonucleotides.
Genetics. 2015 Nov;201(3):951-61. doi: 10.1534/genetics.115.181149. Epub 2015 Sep 22.
5
Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability.
DNA Repair (Amst). 2017 Apr;52:110-114. doi: 10.1016/j.dnarep.2017.02.012. Epub 2017 Feb 20.
6
Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast.
Genetics. 2013 Mar;193(3):751-70. doi: 10.1534/genetics.112.146910. Epub 2013 Jan 10.
7
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.
PLoS Genet. 2015 Mar 5;11(3):e1005049. doi: 10.1371/journal.pgen.1005049. eCollection 2015 Mar.
8
Ribonucleotides are signals for mismatch repair of leading-strand replication errors.
Mol Cell. 2013 May 9;50(3):437-43. doi: 10.1016/j.molcel.2013.03.017. Epub 2013 Apr 18.
9
The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.
DNA Repair (Amst). 2017 May;53:52-58. doi: 10.1016/j.dnarep.2017.02.016. Epub 2017 Mar 6.
10
Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α.
DNA Repair (Amst). 2013 Feb 1;12(2):92-6. doi: 10.1016/j.dnarep.2012.11.001. Epub 2012 Dec 11.

引用本文的文献

2
AUF1 Recognizes 8-Oxo-Guanosine Embedded in DNA and Stimulates APE1 Endoribonuclease Activity.
Antioxid Redox Signal. 2023 Sep;39(7-9):411-431. doi: 10.1089/ars.2022.0105. Epub 2023 Apr 11.
3
Strand specificity of ribonucleotide excision repair in Escherichia coli.
Nucleic Acids Res. 2023 Feb 28;51(4):1766-1782. doi: 10.1093/nar/gkad038.
4
Molecular basis for processing of topoisomerase 1-triggered DNA damage by Apn2/APE2.
Cell Rep. 2022 Oct 4;41(1):111448. doi: 10.1016/j.celrep.2022.111448.
5
The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria.
Annu Rev Microbiol. 2022 Sep 8;76:461-480. doi: 10.1146/annurev-micro-102521-014450. Epub 2022 Jun 2.
6
Ribonucleotide Incorporation by Eukaryotic B-Family Replicases and Its Implications for Genome Stability.
Annu Rev Biochem. 2022 Jun 21;91:133-155. doi: 10.1146/annurev-biochem-032620-110354. Epub 2022 Mar 14.
8
Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ.
Nucleic Acids Res. 2022 Jan 25;50(2):962-974. doi: 10.1093/nar/gkab1255.
9
How asymmetric DNA replication achieves symmetrical fidelity.
Nat Struct Mol Biol. 2021 Dec;28(12):1020-1028. doi: 10.1038/s41594-021-00691-6. Epub 2021 Dec 9.
10
Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways.
Chem Res Toxicol. 2020 Oct 19;33(10):2491-2502. doi: 10.1021/acs.chemrestox.0c00083. Epub 2020 Jun 18.

本文引用的文献

1
RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA.
Mol Cell. 2012 Jan 13;45(1):99-110. doi: 10.1016/j.molcel.2011.12.019.
2
Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I.
Science. 2011 Jun 24;332(6037):1561-4. doi: 10.1126/science.1205016.
3
Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε.
DNA Repair (Amst). 2011 May 5;10(5):476-82. doi: 10.1016/j.dnarep.2011.02.001. Epub 2011 Mar 16.
4
Unlocking the sugar "steric gate" of DNA polymerases.
Biochemistry. 2011 Feb 22;50(7):1135-42. doi: 10.1021/bi101915z. Epub 2011 Jan 26.
5
The importance of being DNA.
Cell Cycle. 2010 Nov 15;9(22):4422-4. doi: 10.4161/cc.9.22.14052.
6
Differential correction of lagging-strand replication errors made by DNA polymerases {alpha} and {delta}.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21070-5. doi: 10.1073/pnas.1013048107. Epub 2010 Nov 1.
7
Genome instability due to ribonucleotide incorporation into DNA.
Nat Chem Biol. 2010 Oct;6(10):774-81. doi: 10.1038/nchembio.424. Epub 2010 Aug 22.
8
Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4949-54. doi: 10.1073/pnas.0914857107. Epub 2010 Mar 1.
9
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
Biochim Biophys Acta. 2010 May;1804(5):1041-8. doi: 10.1016/j.bbapap.2010.01.006. Epub 2010 Jan 15.
10
DNA polymerase proofreading: Multiple roles maintain genome stability.
Biochim Biophys Acta. 2010 May;1804(5):1049-63. doi: 10.1016/j.bbapap.2009.06.012. Epub 2009 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验