School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
N Biotechnol. 2013 Jan 25;30(2):136-43. doi: 10.1016/j.nbt.2012.04.006. Epub 2012 Jun 6.
Knowledge and technology transfer to African laboratories and farmers is an important objective for achieving food security and sustainable crop production on the sub-Saharan African continent. Cassava (Manihot esculenta Crantz) is a vital source of calories for more than a billion people in developing countries, and its potential industrial use for starch and bioethanol in the tropics is increasingly being recognized. However, cassava production remains constrained by the susceptibility of the crop to several biotic and abiotic stresses. For more than a decade, biotechnology has been considered an attractive tool to improve cassava as it substantially circumvents the limitations of traditional breeding, which is particularly time-consuming and tedious because of the high heterozygosity of the crop. A major constraint to the development of biotechnological approaches for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite some success achieved in genetic modification of the model cassava cultivar Tropical Manihot Series (TMS), TMS 60444, in some European and U.S. laboratories, the lack of a reproducible and robust protocol has not allowed the establishment of a routine transformation system in sub-Saharan Africa. In this study, we optimized a robust and efficient protocol developed at ETH Zurich to successfully establish transformation of a commercially cultivated South African landrace, T200, and compared this with the benchmark model cultivar TMS 60444. Results from our study demonstrated high transformation rates for both T200 (23 transgenic lines from 100 friable embryogenic callus (FEC) clusters) compared with TMS 60444 (32 transgenic lines from 100 FEC clusters). The success in transforming landraces or farmer-preferred cultivars has been limited, and the high transformation rate of an industry-preferred landrace in this study is encouraging for a feasible transformation program for cassava improvement in South Africa (SA), which can potentially be extended to other countries in southern Africa. The successful establishment of a robust cassava transformation and regeneration system in SA demonstrates the relevance of technology transfer to sub-Saharan Africa and highlights the importance of developing suitable and reliable techniques before their transfer to laboratories offering less optimal conditions.
将知识和技术转移到非洲的实验室和农民手中,是实现撒哈拉以南非洲大陆粮食安全和可持续作物生产的一个重要目标。木薯(Manihot esculenta Crantz)是发展中国家超过 10 亿人的重要热量来源,其在热带地区作为淀粉和生物乙醇的潜在工业用途正日益得到认可。然而,木薯生产仍然受到作物对多种生物和非生物胁迫的敏感性的限制。十多年来,生物技术被认为是改良木薯的一种有吸引力的工具,因为它大大克服了传统育种的局限性,而传统育种由于作物的高度杂合性,特别耗时费力。开发木薯改良生物技术方法的一个主要制约因素是缺乏有效的和稳健的转化和再生系统。尽管在一些欧洲和美国的实验室中,对模式木薯栽培品种热带 Manihot 系列(TMS)60444 的遗传修饰取得了一些成功,但由于缺乏可重复和稳健的方案,尚未在撒哈拉以南非洲建立常规转化系统。在这项研究中,我们优化了苏黎世联邦理工学院(ETH Zurich)开发的稳健而高效的方案,成功地将其用于转化商业化种植的南非地方品种 T200,并将其与基准模型品种 TMS 60444 进行了比较。我们的研究结果表明,与 TMS 60444(100 个脆弱胚性愈伤组织(FEC)簇中有 32 个转基因系)相比,T200 的转化效率较高(100 个 FEC 簇中有 23 个转基因系)。尽管在转化地方品种或农民首选品种方面取得了一些成功,但在本研究中,一个工业首选的地方品种的高转化率令人鼓舞,这为南非(SA)的木薯改良提供了可行的转化方案,该方案可能会扩展到南部非洲的其他国家。在 SA 成功建立稳健的木薯转化和再生系统,证明了向撒哈拉以南非洲转让技术的相关性,并强调了在向提供条件不太理想的实验室转让技术之前,开发合适和可靠技术的重要性。