Hinds Instruments, Inc., 7245 NW Evergreen Pkwy., Hillsboro, OR 97124, USA.
Phys Chem Chem Phys. 2012 Jul 21;14(27):9586-93. doi: 10.1039/c2cp40950j. Epub 2012 Jun 8.
Magnetic vibrational circular dichroism (MVCD) enables the measurement of molecular magnetic moments with modest spectral resolution. Due to its paramagnetism, NO gives a much stronger spectral response, about 3 orders of magnitude more intense, than do typical diamagnetic molecules. The molecule thus provides a convenient test for the experiment and theory of paramagnetic rotors. We have measured and analyzed the MVCD, equivalent to the molecular Zeeman spectra, of NO in co-linear magnetic fields of 0.1, 0.2, 2, 4 and 8 Tesla. Similar MVCD intensities were observed for both the (2)Π(1/2) and (2)Π(3/2) components of NO, particularly for high J values, which demonstrates a considerable deviation from pure Hund's case (a) for NO. The g(J)-values for the (2)Π(1/2) components of NO, which can be determined from our experimental spectra by moment analysis, agree well with the predicted values from Radford's theory. For the (2)Π(3/2) components, we tested this theory by simulating the MVCD and absorption spectra, and comparing them with our experimental spectra by use of moment analysis to show that they match well in terms of magnetic properties. While 0.2 T experiments easily develop sufficient MVCD for analysis of NO spectra and these low field intensities have a linear field dependence, spectra in the strong fields accessible in our study showed non-linear response due to onset of saturation effects. We also observed a strong field dependence for the absorption intensities for some (2)Π(3/2) components that was not encompassed in the theoretical model. Finally, a full coupling scheme provided analytical MVCD and absorption intensities that were in good agreement with the experimental values.
磁振动圆二色性(MVCD)能够以适度的光谱分辨率测量分子磁矩。由于其顺磁性,NO 给出了比典型抗磁性分子强得多的光谱响应,大约强 3 个数量级。因此,该分子为实验和顺磁转子理论提供了一个方便的测试。我们已经测量并分析了 NO 在 0.1、0.2、2、4 和 8 特斯拉的共线磁场中的 MVCD,等效于分子塞曼光谱。NO 的(2)Π(1/2)和(2)Π(3/2)分量都观察到了相似的 MVCD 强度,尤其是对于高 J 值,这表明对于 NO 来说,存在相当大的偏离纯粹的 Hund 情况(a)。NO 的(2)Π(1/2)分量的 g(J)值可以通过矩分析从我们的实验光谱中确定,与 Radford 理论预测的值非常吻合。对于(2)Π(3/2)分量,我们通过模拟 MVCD 和吸收光谱并使用矩分析将其与实验光谱进行比较来检验该理论,以表明它们在磁性方面匹配良好。虽然 0.2 T 实验很容易产生足够的 MVCD 来分析 NO 光谱,并且这些低场强度具有线性场依赖性,但我们研究中可获得的强场中的光谱由于饱和效应的出现而表现出非线性响应。我们还观察到一些(2)Π(3/2)分量的吸收强度对磁场的强烈依赖性,这在理论模型中没有涵盖。最后,完整的耦合方案提供了与实验值吻合良好的分析 MVCD 和吸收强度。