Faculty of Information Technology, UAEU, Al Ain, UAE.
Proteins. 2012 Oct;80(10):2459-68. doi: 10.1002/prot.24130. Epub 2012 Jul 7.
Detecting protein complexes from protein-protein interaction (PPI) network is becoming a difficult challenge in computational biology. There is ample evidence that many disease mechanisms involve protein complexes, and being able to predict these complexes is important to the characterization of the relevant disease for diagnostic and treatment purposes. This article introduces a novel method for detecting protein complexes from PPI by using a protein ranking algorithm (ProRank). ProRank quantifies the importance of each protein based on the interaction structure and the evolutionarily relationships between proteins in the network. A novel way of identifying essential proteins which are known for their critical role in mediating cellular processes and constructing protein complexes is proposed and analyzed. We evaluate the performance of ProRank using two PPI networks on two reference sets of protein complexes created from Munich Information Center for Protein Sequence, containing 81 and 162 known complexes, respectively. We compare the performance of ProRank to some of the well known protein complex prediction methods (ClusterONE, CMC, CFinder, MCL, MCode and Core) in terms of precision and recall. We show that ProRank predicts more complexes correctly at a competitive level of precision and recall. The level of the accuracy achieved using ProRank in comparison to other recent methods for detecting protein complexes is a strong argument in favor of the proposed method.
从蛋白质-蛋白质相互作用 (PPI) 网络中检测蛋白质复合物在计算生物学中是一项具有挑战性的任务。有充分的证据表明,许多疾病机制涉及蛋白质复合物,能够预测这些复合物对于相关疾病的特征描述,以便进行诊断和治疗是很重要的。本文提出了一种利用蛋白质排序算法(ProRank)从 PPI 中检测蛋白质复合物的新方法。ProRank 根据网络中的相互作用结构和蛋白质之间的进化关系来量化每个蛋白质的重要性。提出并分析了一种新的方法来识别在介导细胞过程和构建蛋白质复合物方面具有关键作用的必需蛋白质。我们使用来自慕尼黑信息中心蛋白质序列的两个参考蛋白质复合物集创建的两个 PPI 网络,评估了 ProRank 的性能,这两个参考集分别包含 81 个和 162 个已知复合物。我们将 ProRank 的性能与一些知名的蛋白质复合物预测方法(ClusterONE、CMC、CFinder、MCL、MCode 和 Core)在精度和召回率方面进行了比较。我们表明,ProRank 在具有竞争力的精度和召回率水平上可以更准确地预测更多的复合物。与其他最近用于检测蛋白质复合物的方法相比,ProRank 达到的准确性水平有力地支持了所提出的方法。