Suppr超能文献

基于改进的 h 指数算法鉴定动态蛋白质网络中的必需蛋白质。

Identifying essential proteins in dynamic protein networks based on an improved h-index algorithm.

机构信息

College of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine University, Nanjing, 210000, China.

出版信息

BMC Med Inform Decis Mak. 2020 Jun 17;20(1):110. doi: 10.1186/s12911-020-01141-x.

Abstract

BACKGROUND

The essential proteins in protein networks play an important role in complex cellular functions and in protein evolution. Therefore, the identification of essential proteins in a network can help to explain the structure, function, and dynamics of basic cellular networks. The existing dynamic protein networks regard the protein components as the same at all time points; however, the role of proteins can vary over time.

METHODS

To improve the accuracy of identifying essential proteins, an improved h-index algorithm based on the attenuation coefficient method is proposed in this paper. This method incorporates previously neglected node information to improve the accuracy of the essential protein search. Based on choosing the appropriate attenuation coefficient, the values, such as monotonicity, SN, SP, PPV and NPV of different essential protein search algorithms are tested.

RESULTS

The experimental results show that, the algorithm proposed in this paper can ensure the accuracy of the found proteins while identifying more essential proteins.

CONCLUSIONS

The described experiments show that this method is more effective than other similar methods in identifying essential proteins in dynamic protein networks. This study can better explain the mechanism of life activities and provide theoretical basis for the research and development of targeted drugs.

摘要

背景

蛋白质网络中的必需蛋白质在复杂的细胞功能和蛋白质进化中起着重要作用。因此,识别网络中的必需蛋白质有助于解释基本细胞网络的结构、功能和动态。现有的动态蛋白质网络将蛋白质成分视为在所有时间点都是相同的;然而,蛋白质的作用是随时间变化的。

方法

为了提高识别必需蛋白质的准确性,本文提出了一种基于衰减系数法的改进 h-index 算法。该方法结合了以前被忽略的节点信息,以提高必需蛋白质搜索的准确性。通过选择适当的衰减系数,测试了不同必需蛋白质搜索算法的单调值、SN、SP、PPV 和 NPV。

结果

实验结果表明,本文提出的算法在识别更多必需蛋白质的同时,能够保证所发现蛋白质的准确性。

结论

描述的实验表明,与其他类似方法相比,该方法在识别动态蛋白质网络中的必需蛋白质方面更有效。本研究可以更好地解释生命活动的机制,并为靶向药物的研究和开发提供理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验