Arthritis Research UK Epidemiology Unit, School of Translational Medicine, University of Manchester, United Kingdom.
Am J Epidemiol. 2012 Jun 15;175(12):1294-302. doi: 10.1093/aje/kwr463. Epub 2012 Apr 24.
Propensity score calibration (PSC) can be used to adjust for unmeasured confounders using a cross-sectional validation study that lacks information on the disease outcome (Y), under a strong surrogacy assumption. Using directed acyclic graphs and path analysis, the authors developed a formula to predict the presence and magnitude of the bias of PSC in the simplest setting of a binary exposure (T) and 1 confounder (X) that are observed in the main study and 1 confounder (C) that is observed in the validation study only. PSC bias is predicted on the basis of parameters that can be estimated from the data and a single unidentifiable parameter, the relative risk (RR) associated with C (RR(CY)). The authors simulated 1,000 cohort studies each with a Poisson-distributed outcome Y, varying parameter values over a wide range. When using the true parameter for RR(CY), the formula predicts PSC bias almost perfectly in this simple setting (correlation with observed bias over 24 scenarios assessed: r = 0.998). The authors conclude that the bias from PSC observed in certain scenarios can be estimated from the imbalance in C between treated and untreated persons, after adjustment for X, in the validation study and assuming a range of plausible values for the unidentifiable RR(CY).
倾向评分校准 (PSC) 可以用于调整未测量的混杂因素,方法是使用缺乏疾病结局 (Y) 信息的横截面验证研究,但需要满足强替代假设。作者使用有向无环图和路径分析,开发了一个公式,用于预测在最简单的二项式暴露 (T) 和 1 个混杂因素 (X) 的情况下,在主要研究中观察到,而在验证研究中仅观察到 1 个混杂因素 (C) 时,PSC 的偏差和幅度。PSC 偏差是基于可以从数据中估计的参数和一个无法识别的参数,即与 C 相关的相对风险 (RR) (RR(CY)) 进行预测的。作者模拟了 1000 项队列研究,每个研究的结果 Y 均呈泊松分布,参数值在很大范围内变化。当使用 RR(CY) 的真实参数时,该公式在这种简单情况下几乎可以完美地预测 PSC 偏差(在 24 种情况下评估的观察偏差的相关性:r = 0.998)。作者得出结论,在验证研究中,通过调整 X 后,在处理组和未处理组之间 C 的不平衡,可以估计某些情况下 PSC 产生的偏差,并且假设 RR(CY) 的未识别值在合理范围内。