Suppr超能文献

在不存在替代指标的情况下进行倾向评分校准。

Propensity score calibration in the absence of surrogacy.

机构信息

Arthritis Research UK Epidemiology Unit, School of Translational Medicine, University of Manchester, United Kingdom.

出版信息

Am J Epidemiol. 2012 Jun 15;175(12):1294-302. doi: 10.1093/aje/kwr463. Epub 2012 Apr 24.

Abstract

Propensity score calibration (PSC) can be used to adjust for unmeasured confounders using a cross-sectional validation study that lacks information on the disease outcome (Y), under a strong surrogacy assumption. Using directed acyclic graphs and path analysis, the authors developed a formula to predict the presence and magnitude of the bias of PSC in the simplest setting of a binary exposure (T) and 1 confounder (X) that are observed in the main study and 1 confounder (C) that is observed in the validation study only. PSC bias is predicted on the basis of parameters that can be estimated from the data and a single unidentifiable parameter, the relative risk (RR) associated with C (RR(CY)). The authors simulated 1,000 cohort studies each with a Poisson-distributed outcome Y, varying parameter values over a wide range. When using the true parameter for RR(CY), the formula predicts PSC bias almost perfectly in this simple setting (correlation with observed bias over 24 scenarios assessed: r = 0.998). The authors conclude that the bias from PSC observed in certain scenarios can be estimated from the imbalance in C between treated and untreated persons, after adjustment for X, in the validation study and assuming a range of plausible values for the unidentifiable RR(CY).

摘要

倾向评分校准 (PSC) 可以用于调整未测量的混杂因素,方法是使用缺乏疾病结局 (Y) 信息的横截面验证研究,但需要满足强替代假设。作者使用有向无环图和路径分析,开发了一个公式,用于预测在最简单的二项式暴露 (T) 和 1 个混杂因素 (X) 的情况下,在主要研究中观察到,而在验证研究中仅观察到 1 个混杂因素 (C) 时,PSC 的偏差和幅度。PSC 偏差是基于可以从数据中估计的参数和一个无法识别的参数,即与 C 相关的相对风险 (RR) (RR(CY)) 进行预测的。作者模拟了 1000 项队列研究,每个研究的结果 Y 均呈泊松分布,参数值在很大范围内变化。当使用 RR(CY) 的真实参数时,该公式在这种简单情况下几乎可以完美地预测 PSC 偏差(在 24 种情况下评估的观察偏差的相关性:r = 0.998)。作者得出结论,在验证研究中,通过调整 X 后,在处理组和未处理组之间 C 的不平衡,可以估计某些情况下 PSC 产生的偏差,并且假设 RR(CY) 的未识别值在合理范围内。

相似文献

1
Propensity score calibration in the absence of surrogacy.在不存在替代指标的情况下进行倾向评分校准。
Am J Epidemiol. 2012 Jun 15;175(12):1294-302. doi: 10.1093/aje/kwr463. Epub 2012 Apr 24.
2
Performance of propensity score calibration--a simulation study.倾向得分校准的性能——一项模拟研究。
Am J Epidemiol. 2007 May 15;165(10):1110-8. doi: 10.1093/aje/kwm074. Epub 2007 Mar 28.
8
[Application of directed acyclic graphs in identifying and controlling confounding bias].有向无环图在识别和控制混杂偏倚中的应用
Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10;41(4):585-588. doi: 10.3760/cma.j.cn112338-20190729-00559.

引用本文的文献

5
Combining Multiple Observational Data Sources to Estimate Causal Effects.结合多个观测数据源以估计因果效应。
J Am Stat Assoc. 2020;115(531):1540-1554. doi: 10.1080/01621459.2019.1609973. Epub 2019 Jun 11.

本文引用的文献

3
Performance of propensity score calibration--a simulation study.倾向得分校准的性能——一项模拟研究。
Am J Epidemiol. 2007 May 15;165(10):1110-8. doi: 10.1093/aje/kwm074. Epub 2007 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验