Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
J Gen Physiol. 2012 Jul;140(1):29-39. doi: 10.1085/jgp.201110749. Epub 2012 Jun 11.
Recently, applications of the patch-clamp fluorometry (PCF) technique in studies of cyclic nucleotide-gated (CNG) and hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels have provided direct evidence for the long-held notion that ligands preferably bind to and stabilize these channels in an open state. This state-dependent ligand-channel interaction involves contributions from not only the ligand-binding domain but also other discrete structural elements within the channel protein. This insight led us to investigate whether the pore of the HCN channel plays a role in the ligand-whole channel interaction. We used three well-characterized HCN channel blockers to probe the ion-conducting passage. The PCF technique was used to simultaneously monitor channel activity and cAMP binding. Two ionic blockers, Cs(+) and Mg(2+), effectively block channel conductance but have no obvious effect on cAMP binding. Surprisingly, ZD7288, an open channel blocker specific for HCN channels, significantly reduces the activity-dependent increase in cAMP binding. Independent biochemical assays exclude any nonspecific interaction between ZD7288 and isolated cAMP-binding domain. Because ZD7228 interacts with the inner pore region, where the activation gate is presumably located, we did an alanine scanning of the intracellular end of S6, from T426 to A435. Mutations of three residues, T426, M430, and H434, which are located at regular intervals on the S6 α-helix, enhance cAMP binding. In contrast, mutations of two residues in close proximity, F431A and I432A, dampen the response. Our results demonstrate that movements of the structural elements near the activation gate directly affect ligand binding affinity, which is a simple mechanistic explanation that could be applied to the interpretation of ligand gating in general.
最近,应用膜片钳荧光检测(PCF)技术研究环核苷酸门控(CNG)和超极化激活、环核苷酸调节(HCN)通道,为长期存在的观点提供了直接证据,即配体优先与这些通道结合并稳定在开放状态。这种状态依赖性的配体-通道相互作用不仅涉及配体结合域,还涉及通道蛋白内的其他离散结构元件。这一见解促使我们研究 HCN 通道的孔是否在配体-整个通道相互作用中起作用。我们使用三种经过充分表征的 HCN 通道阻滞剂来探测离子通道。同时使用 PCF 技术监测通道活性和 cAMP 结合。两种离子通道阻滞剂 Cs(+)和 Mg(2+)有效阻断通道电导,但对 cAMP 结合没有明显影响。令人惊讶的是,HCN 通道特异性开放通道阻滞剂 ZD7288 显著降低了 cAMP 结合的活性依赖性增加。独立的生化测定排除了 ZD7288 与分离的 cAMP 结合结构域之间的任何非特异性相互作用。由于 ZD7228 与内孔区域相互作用,而激活门大概位于该区域,我们对 S6 从 T426 到 A435 的细胞内端进行了丙氨酸扫描。位于 S6 α-螺旋上规则间隔的三个残基 T426、M430 和 H434 的突变增强了 cAMP 结合。相比之下,两个紧邻残基 F431A 和 I432A 的突变则降低了反应。我们的结果表明,激活门附近结构元件的运动直接影响配体结合亲和力,这是一种简单的机制解释,可应用于一般配体门控的解释。