Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK (NK, RG, RR, ZS, RR)
Travers Department of Political Science, UC Berkeley, Berkeley, CA, USA (JSS)
Med Decis Making. 2012 Nov-Dec;32(6):750-63. doi: 10.1177/0272989X12448929. Epub 2012 Jun 12.
Decision makers require cost-effectiveness estimates for patient subgroups. In nonrandomized studies, propensity score (PS) matching and inverse probability of treatment weighting (IPTW) can address overt selection bias, but only if they balance observed covariates between treatment groups. Genetic matching (GM) matches on the PS and individual covariates using an automated search algorithm to directly balance baseline covariates. This article compares these methods for estimating subgroup effects in cost-effectiveness analyses (CEA). The motivating case study is a CEA of a pharmaceutical intervention, drotrecogin alfa (DrotAA), for patient subgroups with severe sepsis (n = 2726). Here, GM reported better covariate balance than PS matching and IPTW. For the subgroup at a high level of baseline risk, the probability that DrotAA was cost-effective ranged from 30% (IPTW) to 90% (PS matching and GM), at a threshold of £20 000 per quality-adjusted life-year. We then compared the methods in a simulation study, in which initially the PS was correctly specified and then misspecified, for example, by ignoring the subgroup-specific treatment assignment. Relative performance was assessed as bias and root mean squared error (RMSE) in the estimated incremental net benefits. When the PS was correctly specified and inverse probability weights were stable, each method performed well; IPTW reported the lowest RMSE. When the subgroup-specific treatment assignment was ignored, PS matching and IPTW reported covariate imbalance and bias; GM reported better balance, less bias, and more precise estimates. We conclude that if the PS is correctly specified and the weights for IPTW are stable, each method can provide unbiased cost-effectiveness estimates. However, unlike IPTW and PS matching, GM is relatively robust to PS misspecification.
决策者需要为患者亚组提供成本效益估计。在非随机研究中,倾向评分(PS)匹配和逆概率治疗加权(IPTW)可以解决明显的选择偏差,但前提是它们在治疗组之间平衡了观察到的协变量。遗传匹配(GM)在 PS 和个体协变量上匹配,使用自动搜索算法直接平衡基线协变量。本文比较了这些方法在成本效益分析(CEA)中估计亚组效应的效果。激励性案例研究是对一种药物干预措施——重组人组织型纤溶酶原激活物(DrotAA)的 CEA,用于严重败血症患者亚组(n=2726)。在这里,GM 报告的协变量平衡优于 PS 匹配和 IPTW。对于基线风险较高的亚组,DrotAA 具有成本效益的概率范围为 30%(IPTW)至 90%(PS 匹配和 GM),在每质量调整生命年 20000 英镑的阈值下。然后,我们在模拟研究中比较了这些方法,其中 PS 最初被正确指定,然后被错误指定,例如忽略了亚组特定的治疗分配。相对性能的评估标准是估计增量净效益的偏差和均方根误差(RMSE)。当 PS 被正确指定且逆概率权重稳定时,每种方法的性能都很好;IPTW 报告的 RMSE 最低。当忽略亚组特定的治疗分配时,PS 匹配和 IPTW 报告协变量不平衡和偏差;GM 报告了更好的平衡,更少的偏差和更精确的估计。我们的结论是,如果 PS 被正确指定且 IPTW 的权重稳定,则每种方法都可以提供无偏的成本效益估计。然而,与 IPTW 和 PS 匹配不同,GM 对 PS 错误指定相对稳健。