Suppr超能文献

一种用于估计亚组和个体水平治疗效果的机器学习方法:以65项试验为例

A Machine-Learning Approach for Estimating Subgroup- and Individual-Level Treatment Effects: An Illustration Using the 65 Trial.

作者信息

Sadique Zia, Grieve Richard, Diaz-Ordaz Karla, Mouncey Paul, Lamontagne Francois, O'Neill Stephen

机构信息

Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK.

Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.

出版信息

Med Decis Making. 2022 Oct;42(7):923-936. doi: 10.1177/0272989X221100717. Epub 2022 May 24.

Abstract

This article examines a causal machine-learning approach, causal forests (CF), for exploring the heterogeneity of treatment effects, without prespecifying a specific functional form.The CF approach is considered in the reanalysis of the 65 Trial and was found to provide similar estimates of subgroup effects to using a fixed parametric model.The CF approach also provides estimates of individual-level treatment effects that suggest that for most patients in the 65 Trial, the intervention is expected to reduce 90-d mortality but with wide levels of statistical uncertainty.The study illustrates how individual-level treatment effect estimates can be analyzed to generate hypotheses for further research about those patients who are likely to benefit most from an intervention.

摘要

本文探讨了一种因果机器学习方法——因果森林(CF),用于探索治疗效果的异质性,而无需预先指定特定的函数形式。在对65项试验的重新分析中考虑了CF方法,结果发现它提供的亚组效应估计与使用固定参数模型时相似。CF方法还提供了个体水平治疗效果的估计,这表明在65项试验中的大多数患者中,干预措施预计可降低90天死亡率,但存在很大的统计不确定性。该研究说明了如何分析个体水平的治疗效果估计,以生成关于那些可能从干预中获益最大的患者的进一步研究假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc0/9459357/39b62f10a6a6/10.1177_0272989X221100717-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验