Sadique Zia, Grieve Richard, Diaz-Ordaz Karla, Mouncey Paul, Lamontagne Francois, O'Neill Stephen
Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK.
Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.
Med Decis Making. 2022 Oct;42(7):923-936. doi: 10.1177/0272989X221100717. Epub 2022 May 24.
This article examines a causal machine-learning approach, causal forests (CF), for exploring the heterogeneity of treatment effects, without prespecifying a specific functional form.The CF approach is considered in the reanalysis of the 65 Trial and was found to provide similar estimates of subgroup effects to using a fixed parametric model.The CF approach also provides estimates of individual-level treatment effects that suggest that for most patients in the 65 Trial, the intervention is expected to reduce 90-d mortality but with wide levels of statistical uncertainty.The study illustrates how individual-level treatment effect estimates can be analyzed to generate hypotheses for further research about those patients who are likely to benefit most from an intervention.
本文探讨了一种因果机器学习方法——因果森林(CF),用于探索治疗效果的异质性,而无需预先指定特定的函数形式。在对65项试验的重新分析中考虑了CF方法,结果发现它提供的亚组效应估计与使用固定参数模型时相似。CF方法还提供了个体水平治疗效果的估计,这表明在65项试验中的大多数患者中,干预措施预计可降低90天死亡率,但存在很大的统计不确定性。该研究说明了如何分析个体水平的治疗效果估计,以生成关于那些可能从干预中获益最大的患者的进一步研究假设。