Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
RTI Health Solutions, RTI International, Research Triangle Park, North Carolina, USA.
Stat Med. 2021 Apr;40(9):2101-2112. doi: 10.1002/sim.8887. Epub 2021 Feb 23.
Inverse probability of treatment weighting (IPTW) may be biased by influential observations, which can occur from misclassification of strong exposure predictors.
We evaluated bias and precision of IPTW estimators in the presence of a misclassified confounder and assessed the effect of propensity score (PS) trimming. We generated 1000 plasmode cohorts of size N = 10 000, sampled with replacement from 6063 NHANES respondents (1999-2014) age 40 to 79 with labs and no statin use. We simulated statin exposure as a function of demographics and CVD risk factors; and outcomes as a function of 10-year CVD risk score and statin exposure (rate ratio [RR] = 0.5). For 5% of the people in selected populations (eg, all patients, exposed, those with outcomes), we randomly misclassified a confounder that strongly predicted exposure. We fit PS models and estimated RRs using IPTW and 1:1 PS matching, with and without asymmetric trimming.
IPTW bias was substantial when misclassification was differential by outcome (RR range: 0.38-0.63) and otherwise minimal (RR range: 0.51-0.53). However, trimming reduced bias for IPTW, nearly eliminating it at 5% trimming (RR range: 0.49-0.52). In one scenario, when the confounder was misclassified for 5% of those with outcomes (0.3% of cohort), untrimmed IPTW was more biased and less precise (RR = 0.37 [SE(logRR) = 0.21]) than matching (RR = 0.50 [SE(logRR) = 0.13]). After 1% trimming, IPTW estimates were unbiased and more precise (RR = 0.49 [SE(logRR) = 0.12]) than matching (RR = 0.51 [SE(logRR) = 0.14]).
Differential misclassification of a strong predictor of exposure resulted in biased and imprecise IPTW estimates. Asymmetric trimming reduced bias, with more precise estimates than matching.
逆概率治疗加权(Inverse probability of treatment weighting,IPTW)可能因强暴露预测因素的分类错误而产生偏差。
我们评估了在存在混淆因素分类错误的情况下,IPTW 估计值的偏差和精度,并评估了倾向评分(propensity score,PS)修剪的效果。我们从 1999 年至 2014 年期间没有使用他汀类药物且年龄在 40 至 79 岁的 6063 名 NHANES 调查对象中抽取 1000 个大小为 N=10000 的 plasmode 队列,进行了重复抽样。我们将他汀类药物暴露模拟为人口统计学和心血管疾病风险因素的函数;将结局模拟为 10 年心血管疾病风险评分和他汀类药物暴露的函数(率比 [rate ratio,RR] = 0.5)。在选定人群中(例如,所有患者、暴露人群、有结局的人群)的 5%的人中,我们随机混淆了一个强烈预测暴露的混淆因素。我们拟合了 PS 模型,并使用 IPTW 和 1:1 PS 匹配,评估了 RR 的估计值,同时考虑了不对称修剪。
当结局的混淆存在差异时(RR 范围:0.38-0.63),IPTW 的偏差很大,否则偏差很小(RR 范围:0.51-0.53)。然而,修剪降低了 IPTW 的偏差,在 5%的修剪时几乎消除了偏差(RR 范围:0.49-0.52)。在一种情况下,当结局为 5%的人群中(队列的 0.3%)混淆了混杂因素时,未修剪的 IPTW 更具偏差且精度更低(RR=0.37 [SE(logRR)=0.21]),而匹配的精度更高(RR=0.50 [SE(logRR)=0.13])。在 1%修剪后,IPTW 的估计值无偏差且更精确(RR=0.49 [SE(logRR)=0.12]),而匹配的精度更低(RR=0.51 [SE(logRR)=0.14])。
强暴露预测因素的分类错误导致了 IPTW 估计值的偏差和不精确。不对称修剪降低了偏差,同时提高了估计值的精度。