Suppr超能文献

计算机辅助组织工程:受益于对支架微结构的控制。

Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.

作者信息

Tarawneh Ahmad M, Wettergreen Matthew, Liebschner Michael A K

机构信息

Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.

出版信息

Methods Mol Biol. 2012;868:1-25. doi: 10.1007/978-1-61779-764-4_1.

Abstract

Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.

摘要

自然界中的最小化模式影响着大多数物体的物质排列,与尺度无关。细胞固体领域专注于将这些天然结构(骨骼、木材、珊瑚、软木、蜂窝)进行推广,以改善材料性能并阐明自然生长机制。我们应用这种方法来比较一组具有相同材料体积但结构排列不同的复杂三维(3D)结构。根据诸如梁长度、梁直径、表面积、空间填充效率和孔隙体积等几何特性,对这些结构在不同材料体积下的球棍表示进行了表征。通过有限元模拟揭示了仅由结构排列所贡献的模量、变形特性和应力分布。我们证明,虽然密度是控制模量的最大因素,但即使体积差异高达10%,最佳的材料排列也可能导致相等的模量值。我们表明,在低孔隙率下,结构复杂性的丧失使这些结构可以被建模为闭孔固体。在这些较低的孔隙率下,较小的孔隙对结构的整体模量贡献不大,应力骨架决定了模量。我们的结果进一步表明,当考虑基于沉积的生长模式(如自然界中发生的那样)时,表面积在这些结构的最终强度中起着很大作用,特别是对于像骨骼这样的系统。这项完整的研究代表了朝着开发数学算法迈出的第一步,该算法用于描述用于组织再生应用的规则和对称结构的力学性能。最终目标是创建一组逻辑规则,仅根据结构的几何形状就能解释其结构特性。然后,这些信息可以以自动方式用于生成针对特定患者的支架,用于治疗组织缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验