Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA.
J Biomed Mater Res A. 2010 Jul;94(1):9-18. doi: 10.1002/jbm.a.32653.
Matching tissue engineering scaffold modulus to that of native tissue is highly desirable. Effective scaffold modulus can be altered through changes in base material modulus and/or scaffold pore architecture. Because the latter may be restricted by tissue in-growth requirements, it is advantageous to be able to alter the base material modulus of a chosen scaffold material. Here, we show that the bulk modulus of poly(glycerol sebacate) (PGS) can be changed by varying molar ratios during prepolymer synthesis and by varying curing time. We go on to show that PGS can be used to create 3D designed scaffolds via solid freeform fabrication methods with modulus values that fall within the ranges of native articular cartilage equilibrium modulus. Furthermore, using base material modulus inputs, homogenization finite element analysis can effectively predict the tangent modulus of PGS scaffold designs, which provides a significant advantage for designing new cartilage regeneration scaffolds. Lastly, we demonstrate that this relatively new biomedical material supports cartilaginous matrix production by chondrocytes in vitro. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
匹配组织工程支架的模量与天然组织的模量是非常理想的。有效支架的模量可以通过改变基质材料的模量和/或支架的孔结构来改变。由于后者可能受到组织内生长要求的限制,因此能够改变所选支架材料的基质材料模量是有利的。在这里,我们表明可以通过改变预聚物合成过程中的摩尔比和改变固化时间来改变聚(甘油癸二酸酯)(PGS)的体积模量。我们进一步表明,PGS 可以通过立体光固化成型方法来制造具有天然关节软骨平衡模量范围内模量值的 3D 设计支架。此外,使用基质材料模量输入,均匀化有限元分析可以有效地预测 PGS 支架设计的切线模量,这为设计新的软骨再生支架提供了显著的优势。最后,我们证明这种相对较新的生物医学材料支持软骨细胞在体外产生软骨基质。(c)2010 Wiley 期刊,Inc. J Biomed Mater Res,2010。