Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA.
Protein Sci. 2012 Aug;21(8):1197-209. doi: 10.1002/pro.2107.
The amino acid substitution or post-translational modification of a cytosolic protein can cause unpredictable changes to its electrophoretic mobility during SDS-PAGE. This type of "gel shifting" has perplexed biochemists and biologists for decades. We identify a mechanism for "gel shifting" that predominates among a set of ALS (amyotrophic lateral sclerosis) mutant hSOD1 (superoxide dismutase) proteins, post-translationally modified hSOD1 proteins, and homologous SOD1 proteins from different organisms. By first comparing how 39 amino acid substitutions throughout hSOD1 affected SDS-PAGE migration, we found that substitutions that caused gel shifting occurred within a single polyacidic domain (residues ~80-101), and were nonisoelectric. Substitutions that decreased the net negative charge of domain 80-101 increased migration; only one substitution increased net negative charge and slowed migration. Capillary electrophoresis, circular dichroism, and size exclusion chromatography demonstrated that amino acid substitutions increase migration during SDS-PAGE by promoting the binding of three to four additional SDS molecules, without significantly altering the secondary structure or Stokes radius of hSOD1-SDS complexes. The high negative charge of domain 80-101 is required for SOD1 gel shifting: neutralizing the polyacidic domain (via chimeric mouse-human SOD1 fusion proteins) inhibited amino acid substitutions from causing gel shifting. These results demonstrate that the pattern of gel shifting for mutant cytosolic proteins can be used to: (i) identify domains in the primary structure that control interactions between denatured cytosolic proteins and SDS and (ii) identify a predominant chemical mechanism for the interaction (e.g., hydrophobic vs. electrostatic).
细胞质蛋白的氨基酸取代或翻译后修饰会导致其在 SDS-PAGE 中的电泳迁移率发生不可预测的变化。这种类型的“凝胶迁移”几十年来一直困扰着生物化学家和生物学家。我们确定了一种“凝胶迁移”的机制,该机制主要存在于一组 ALS(肌萎缩侧索硬化症)突变 hSOD1(超氧化物歧化酶)蛋白、翻译后修饰的 hSOD1 蛋白和来自不同生物体的同源 SOD1 蛋白中。首先比较 hSOD1 中 39 个氨基酸取代如何影响 SDS-PAGE 迁移,我们发现引起凝胶迁移的取代发生在单一的多酸性结构域(残基~80-101)内,并且是非等电点的。降低结构域 80-101 净负电荷的取代会增加迁移率;只有一个取代增加了净负电荷并减缓了迁移率。毛细管电泳、圆二色性和尺寸排阻色谱表明,氨基酸取代通过促进结合三到四个额外的 SDS 分子来增加 SDS-PAGE 中的迁移率,而不会显著改变 hSOD1-SDS 复合物的二级结构或斯托克斯半径。结构域 80-101 的高负电荷是 SOD1 凝胶迁移所必需的:中和多酸性结构域(通过嵌合鼠-人 SOD1 融合蛋白)抑制了氨基酸取代引起的凝胶迁移。这些结果表明,突变细胞质蛋白的凝胶迁移模式可用于:(i)鉴定控制变性细胞质蛋白与 SDS 之间相互作用的一级结构中的结构域,以及(ii)鉴定相互作用的主要化学机制(例如,疏水作用与静电作用)。