Wyczalkowski Matthew A, Chen Zi, Filas Benjamen A, Varner Victor D, Taber Larry A
Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
Birth Defects Res C Embryo Today. 2012 Jun;96(2):132-52. doi: 10.1002/bdrc.21013.
In the developing embryo, tissues differentiate, deform, and move in an orchestrated manner to generate various biological shapes driven by the complex interplay between genetic, epigenetic, and environmental factors. Mechanics plays a key role in regulating and controlling morphogenesis, and quantitative models help us understand how various mechanical forces combine to shape the embryo. Models allow for the quantitative, unbiased testing of physical mechanisms, and when used appropriately, can motivate new experimentaldirections. This knowledge benefits biomedical researchers who aim to prevent and treat congenital malformations, as well as engineers working to create replacement tissues in the laboratory. In this review, we first give an overview of fundamental mechanical theories for morphogenesis, and then focus on models for specific processes, including pattern formation, gastrulation, neurulation, organogenesis, and wound healing. The role of mechanical feedback in development is also discussed. Finally, some perspectives aregiven on the emerging challenges in morphomechanics and mechanobiology.
在发育中的胚胎中,组织以协调的方式分化、变形和移动,以生成由遗传、表观遗传和环境因素之间复杂的相互作用驱动的各种生物形状。力学在调节和控制形态发生中起关键作用,定量模型有助于我们理解各种机械力如何结合塑造胚胎。模型允许对物理机制进行定量、无偏的测试,并且在适当使用时,可以推动新的实验方向。这些知识有益于旨在预防和治疗先天性畸形的生物医学研究人员,以及致力于在实验室中创建替代组织的工程师。在这篇综述中,我们首先概述形态发生的基本力学理论,然后重点关注特定过程的模型,包括模式形成、原肠胚形成、神经胚形成、器官发生和伤口愈合。还讨论了机械反馈在发育中的作用。最后,对形态力学和力学生物学中出现的挑战给出了一些观点。