Suppr超能文献

点集的组间配准用于统计形状模型。

Group-wise registration of point sets for statistical shape models.

出版信息

IEEE Trans Med Imaging. 2012 Nov;31(11):2025-34. doi: 10.1109/TMI.2012.2202913. Epub 2012 Jun 5.

Abstract

This paper presents a novel, fast, group-wise registration technique based on establishing soft correspondences between groups of point sets. The registration approach is used to create a statistical shape model, capable of learning the shape variations within a training set. The shape model consists of a mean shape and its transformations to all training shapes. We decouple the procedure into two steps: updating the mean shape and registering it to the training shapes. The algorithm alternates between these two steps until convergence. Following the generation of the statistical shape model, we use the soft correspondence approach to register the model to a new observation. We perform extensive experiments on two data sets: lumbar spine and hippocampi. We compare our algorithm to available state-of- the-art group-wise registration algorithms including feature-based and volume-based approaches. We demonstrate improved generalization, specificity and compactness compared to these algorithms.

摘要

本文提出了一种新颖、快速的基于建立点集组之间软对应关系的分组注册技术。该注册方法用于创建一个统计形状模型,能够学习训练集中的形状变化。形状模型由一个平均形状及其对所有训练形状的变换组成。我们将该过程分为两步:更新平均形状并将其注册到训练形状。该算法在这两个步骤之间交替,直到收敛。在生成统计形状模型后,我们使用软对应方法将模型注册到新的观察值。我们在两个数据集上进行了广泛的实验:腰椎和海马体。我们将我们的算法与现有的最先进的分组注册算法进行了比较,包括基于特征和基于体积的方法。与这些算法相比,我们证明了改进的泛化性、特异性和紧凑性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验